Spaces:
Running
on
Zero
Running
on
Zero
nftblackmagic
commited on
Create app_lora.py
Browse files- app_lora.py +202 -0
app_lora.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from tryon_inference import run_inference
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import tempfile
|
9 |
+
import torch
|
10 |
+
from diffusers import FluxTransformer2DModel, FluxFillPipeline
|
11 |
+
import subprocess
|
12 |
+
|
13 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
14 |
+
dtype = torch.bfloat16
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
print("Start loading LoRA weights")
|
18 |
+
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
|
19 |
+
pretrained_model_name_or_path_or_dict="xiaozaa/catvton-flux-lora-alpha", ## The tryon Lora weights
|
20 |
+
weight_name="pytorch_lora_weights.safetensors",
|
21 |
+
return_alphas=True
|
22 |
+
)
|
23 |
+
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
|
24 |
+
if not is_correct_format:
|
25 |
+
raise ValueError("Invalid LoRA checkpoint.")
|
26 |
+
print('Loading diffusion model ...')
|
27 |
+
pipe = FluxFillPipeline.from_pretrained(
|
28 |
+
"black-forest-labs/FLUX.1-Fill-dev",
|
29 |
+
torch_dtype=torch.bfloat16
|
30 |
+
).to(device)
|
31 |
+
FluxFillPipeline.load_lora_into_transformer(
|
32 |
+
state_dict=state_dict,
|
33 |
+
network_alphas=network_alphas,
|
34 |
+
transformer=pipe.transformer,
|
35 |
+
)
|
36 |
+
|
37 |
+
print('Loading Finished!')
|
38 |
+
|
39 |
+
@spaces.GPU
|
40 |
+
def gradio_inference(
|
41 |
+
image_data,
|
42 |
+
garment,
|
43 |
+
num_steps=50,
|
44 |
+
guidance_scale=30.0,
|
45 |
+
seed=-1,
|
46 |
+
width=768,
|
47 |
+
height=1024
|
48 |
+
):
|
49 |
+
"""Wrapper function for Gradio interface"""
|
50 |
+
# Use temporary directory
|
51 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
52 |
+
# Save inputs to temp directory
|
53 |
+
temp_image = os.path.join(tmp_dir, "image.png")
|
54 |
+
temp_mask = os.path.join(tmp_dir, "mask.png")
|
55 |
+
temp_garment = os.path.join(tmp_dir, "garment.png")
|
56 |
+
|
57 |
+
# Extract image and mask from ImageEditor data
|
58 |
+
image = image_data["background"]
|
59 |
+
mask = image_data["layers"][0] # First layer contains the mask
|
60 |
+
|
61 |
+
# Convert to numpy array and process mask
|
62 |
+
mask_array = np.array(mask)
|
63 |
+
is_black = np.all(mask_array < 10, axis=2)
|
64 |
+
mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
|
65 |
+
|
66 |
+
# Save files to temp directory
|
67 |
+
image.save(temp_image)
|
68 |
+
mask.save(temp_mask)
|
69 |
+
garment.save(temp_garment)
|
70 |
+
|
71 |
+
try:
|
72 |
+
# Run inference
|
73 |
+
_, tryon_result = run_inference(
|
74 |
+
pipe=pipe,
|
75 |
+
image_path=temp_image,
|
76 |
+
mask_path=temp_mask,
|
77 |
+
garment_path=temp_garment,
|
78 |
+
num_steps=num_steps,
|
79 |
+
guidance_scale=guidance_scale,
|
80 |
+
seed=seed,
|
81 |
+
size=(width, height)
|
82 |
+
)
|
83 |
+
return tryon_result
|
84 |
+
except Exception as e:
|
85 |
+
raise gr.Error(f"Error during inference: {str(e)}")
|
86 |
+
|
87 |
+
with gr.Blocks() as demo:
|
88 |
+
gr.Markdown("""
|
89 |
+
# CATVTON FLUX Virtual Try-On Demo (by using LoRA weights)
|
90 |
+
Upload a model image, draw a mask, and a garment image to generate virtual try-on results.
|
91 |
+
|
92 |
+
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha)
|
93 |
+
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux)
|
94 |
+
""")
|
95 |
+
|
96 |
+
# gr.Video("example/github.mp4", label="Demo Video: How to use the tool")
|
97 |
+
|
98 |
+
with gr.Column():
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
image_input = gr.ImageMask(
|
102 |
+
label="Model Image (Click 'Edit' and draw mask over the clothing area)",
|
103 |
+
type="pil",
|
104 |
+
height=600,
|
105 |
+
width=300
|
106 |
+
)
|
107 |
+
gr.Examples(
|
108 |
+
examples=[
|
109 |
+
["./example/person/00008_00.jpg"],
|
110 |
+
["./example/person/00055_00.jpg"],
|
111 |
+
["./example/person/00057_00.jpg"],
|
112 |
+
["./example/person/00067_00.jpg"],
|
113 |
+
["./example/person/00069_00.jpg"],
|
114 |
+
],
|
115 |
+
inputs=[image_input],
|
116 |
+
label="Person Images",
|
117 |
+
)
|
118 |
+
with gr.Column():
|
119 |
+
garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300)
|
120 |
+
gr.Examples(
|
121 |
+
examples=[
|
122 |
+
["./example/garment/04564_00.jpg"],
|
123 |
+
["./example/garment/00055_00.jpg"],
|
124 |
+
["./example/garment/00396_00.jpg"],
|
125 |
+
["./example/garment/00067_00.jpg"],
|
126 |
+
["./example/garment/00069_00.jpg"],
|
127 |
+
],
|
128 |
+
inputs=[garment_input],
|
129 |
+
label="Garment Images",
|
130 |
+
)
|
131 |
+
with gr.Column():
|
132 |
+
tryon_output = gr.Image(label="Try-On Result", height=600, width=300)
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
num_steps = gr.Slider(
|
136 |
+
minimum=1,
|
137 |
+
maximum=100,
|
138 |
+
value=30,
|
139 |
+
step=1,
|
140 |
+
label="Number of Steps"
|
141 |
+
)
|
142 |
+
guidance_scale = gr.Slider(
|
143 |
+
minimum=1.0,
|
144 |
+
maximum=50.0,
|
145 |
+
value=30.0,
|
146 |
+
step=0.5,
|
147 |
+
label="Guidance Scale"
|
148 |
+
)
|
149 |
+
seed = gr.Slider(
|
150 |
+
minimum=-1,
|
151 |
+
maximum=2147483647,
|
152 |
+
step=1,
|
153 |
+
value=-1,
|
154 |
+
label="Seed (-1 for random)"
|
155 |
+
)
|
156 |
+
width = gr.Slider(
|
157 |
+
minimum=256,
|
158 |
+
maximum=1024,
|
159 |
+
step=64,
|
160 |
+
value=768,
|
161 |
+
label="Width"
|
162 |
+
)
|
163 |
+
height = gr.Slider(
|
164 |
+
minimum=256,
|
165 |
+
maximum=1024,
|
166 |
+
step=64,
|
167 |
+
value=1024,
|
168 |
+
label="Height"
|
169 |
+
)
|
170 |
+
|
171 |
+
|
172 |
+
submit_btn = gr.Button("Generate Try-On", variant="primary")
|
173 |
+
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
gr.Markdown("""
|
177 |
+
### Notes:
|
178 |
+
- The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation.
|
179 |
+
- The mask should indicate the region where the garment will be placed.
|
180 |
+
- The garment image should be on a clean background.
|
181 |
+
- The model is not perfect. It may generate some artifacts.
|
182 |
+
- The model is slow. Please be patient.
|
183 |
+
- The model is just for research purpose.
|
184 |
+
""")
|
185 |
+
|
186 |
+
submit_btn.click(
|
187 |
+
fn=gradio_inference,
|
188 |
+
inputs=[
|
189 |
+
image_input,
|
190 |
+
garment_input,
|
191 |
+
num_steps,
|
192 |
+
guidance_scale,
|
193 |
+
seed,
|
194 |
+
width,
|
195 |
+
height
|
196 |
+
],
|
197 |
+
outputs=[tryon_output],
|
198 |
+
api_name="try-on"
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
demo.launch()
|