xzyao commited on
Commit
a58e1d4
·
verified ·
1 Parent(s): e3543f9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_leaderboard import Leaderboard
3
+ import plotly.express as px
4
+ from pathlib import Path
5
+ import pandas as pd
6
+ import numpy as np
7
+ abs_path = Path(__file__).parent
8
+
9
+ def parse_model_args(model_args):
10
+ if "deltazip" in model_args:
11
+ model_args = model_args.split("deltazip")[1]
12
+ model_args = model_args.split(",")[0]
13
+ model_args = model_args.strip(".")
14
+ model_args = model_args.replace(".", "/")
15
+ if "espressor/" in model_args:
16
+ model_args = model_args.split("espressor/")[1]
17
+ model_args = model_args.split(",")[0]
18
+ model_args = model_args.strip(".")
19
+ model_args = model_args.replace(".", "/",1)
20
+ model_args = model_args.split("_")[0]
21
+ else:
22
+ model_args = model_args.split(",")[0]
23
+ model_args = model_args.replace("pretrained=", "")
24
+ return model_args
25
+
26
+ def parse_model_precision(model_args):
27
+ if "espressor" in model_args:
28
+ if 'W8A8_int8' in model_args:
29
+ precision = 'W8A8_int8'
30
+ else:
31
+ precision = model_args.split("_")[-1]
32
+ else:
33
+ precision = "Default"
34
+ return precision
35
+
36
+ # Any pandas-compatible data
37
+ df = pd.read_csv(str(abs_path / "eval_results.csv"))
38
+ # take acc only
39
+ df = df[df['metric'] == 'acc']
40
+ # dedup
41
+ df = df.drop_duplicates(subset=['model', 'task'])
42
+ # pivot df, such that the column names are model,task,efficiency
43
+ # but keep precision in its original place
44
+ df = df.pivot(index='model', columns='task', values='value').reset_index()
45
+
46
+ df['precision'] = df['model'].apply(lambda x: x.split(":")[-1])
47
+ df['model'] = df['model'].apply(lambda x: x.split(":")[0])
48
+
49
+ # average over all columns starting with 'task_'
50
+ df['avg_acc'] = df.filter(like='task_').mean(axis=1)
51
+ # keep 2 decimal points for avg_acc, and all tasks_
52
+ # rename columns starting with 'task_' by removing 'task_'
53
+ df = df.rename(columns=lambda x: x.replace('task_', ''))
54
+ numeric_columns = df.select_dtypes(include=[np.number]).columns
55
+ df[numeric_columns] = (df[numeric_columns]*100).round(2)
56
+
57
+ with gr.Blocks() as demo:
58
+ gr.Markdown("""
59
+ # 🥇 Efficient LLM Leaderboard
60
+ """)
61
+ task_options = [col for col in df.columns if col not in ['model', 'precision']]
62
+
63
+ with gr.Row():
64
+ selected_tasks = gr.CheckboxGroup(choices=task_options, label="Select Tasks")
65
+ with gr.Row():
66
+ accuracy_plot = gr.Plot(label="Accuracy Plot")
67
+ data_table = gr.Dataframe(value=df, label="Result Table")
68
+
69
+ def update_outputs(selected_tasks):
70
+ if not selected_tasks:
71
+ return df[['model', 'precision']], None
72
+ filtered_df = df[['model', 'precision'] + selected_tasks]
73
+ melted_df = filtered_df.melt(id_vars=['model', 'precision'], var_name='task', value_name='accuracy')
74
+ fig = px.bar(melted_df, x='model', y='accuracy', color='precision', barmode='group', facet_col='task')
75
+ return filtered_df, fig
76
+
77
+ selected_tasks.change(fn=update_outputs, inputs=selected_tasks, outputs=[data_table, accuracy_plot])
78
+
79
+
80
+ if __name__ == "__main__":
81
+ demo.launch()