xichen98cn's picture
Upload 135 files
3dac99f verified
raw
history blame
9.4 kB
import torch
import torch.nn.functional as F
import math
from detectron2.utils import comm
import open_clip
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
@BACKBONE_REGISTRY.register()
class CLIP(Backbone):
def __init__(self, cfg, input_shape):
super().__init__()
model_name = cfg.MODEL.FROZEN_SEG.CLIP_MODEL_NAME
pretrained= cfg.MODEL.FROZEN_SEG.CLIP_PRETRAINED_WEIGHTS
# download on local rank 0 first
if comm.get_local_rank() == 0:
open_clip.create_model_and_transforms(model_name, pretrained=pretrained)
comm.synchronize()
self.model_name = model_name
self.pretrained = pretrained
self.clip_model, _, _ = open_clip.create_model_and_transforms(model_name, pretrained=pretrained)
self.text_tokenizer = open_clip.get_tokenizer(model_name)
model_name = model_name.lower()
if 'convnext_' in model_name:
self.model_type = 'convnext'
if '_base' in model_name:
self.output_channels = [128, 128, 256, 512, 1024]
elif '_large' in model_name:
self.output_channels = [192, 192, 384, 768, 1536]
elif '_xxlarge' in model_name:
self.output_channels = [384, 384, 768, 1536, 3072]
elif 'rn' in model_name:
self.model_type = 'resnet'
if model_name.replace('-quickgelu', '') in ['rn50', 'rn101']:
self.output_channels = [64, 256, 512, 1024, 2048]
elif model_name == 'rn50x4':
self.output_channels = [80, 320, 640, 1280, 2560]
elif model_name == 'rn50x16':
self.output_channels = [96, 384, 768, 1536, 3072]
elif model_name == 'rn50x64':
self.output_channels = [128, 512, 1024, 2048, 4096]
self._out_feature_strides = {
"stem": 2,
"res2": 4,
"res3": 8,
"res4": 16,
"res5": 32,
"clip_embedding": -1
}
self._out_feature_channels = {
"stem": self.output_channels[0],
"res2": self.output_channels[1],
"res3": self.output_channels[2],
"res4": self.output_channels[3],
"res5": self.output_channels[4],
"clip_embedding": self.dim_latent
}
self.eval()
self.freeze_everything()
def freeze_everything(self):
for param in self.clip_model.parameters():
param.requires_grad = False
def encode_text(self, text, normalize: bool = False):
cast_dtype = self.clip_model.transformer.get_cast_dtype()
x = self.clip_model.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.clip_model.positional_embedding.to(cast_dtype)
# x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip_model.transformer(x, attn_mask=self.clip_model.attn_mask)
# x = x.permute(1, 0, 2) # LND -> NLD
x = self.clip_model.ln_final(x) # [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.clip_model.text_projection
return F.normalize(x, dim=-1) if normalize else x
def tokenize_text(self, text):
return self.text_tokenizer(text)
def extract_features(self, x):
return {
'convnext': self.extract_features_convnext,
'resnet': self.extract_features_resnet,
}[self.model_type](x)
def visual_prediction_forward(self, x, masks=None):
return {
'convnext': self.visual_prediction_forward_convnext,
'resnet': self.visual_prediction_forward_resnet,
}[self.model_type](x, masks)
def extract_features_convnext(self, x):
out = {}
x = self.clip_model.visual.trunk.stem(x)
out['stem'] = x.contiguous() # os4
for i in range(4):
x = self.clip_model.visual.trunk.stages[i](x)
out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
x = self.clip_model.visual.trunk.norm_pre(x)
out['clip_vis_dense'] = x.contiguous()
return out
def extract_features_resnet(self, x):
out = {}
x = self.clip_model.visual.act1(self.clip_model.visual.bn1(self.clip_model.visual.conv1(x)))
x = self.clip_model.visual.act2(self.clip_model.visual.bn2(self.clip_model.visual.conv2(x)))
x = self.clip_model.visual.act3(self.clip_model.visual.bn3(self.clip_model.visual.conv3(x)))
out['stem'] = x.contiguous() # os2
x = self.clip_model.visual.avgpool(x)
x = self.clip_model.visual.layer1(x)
out['res2'] = x.contiguous() # os4
x = self.clip_model.visual.layer2(x)
out['res3'] = x.contiguous() # os8
x = self.clip_model.visual.layer3(x)
out['res4'] = x.contiguous() # os16
x = self.clip_model.visual.layer4(x)
out['res5'] = x.contiguous() # os32
out['clip_vis_dense'] = x
return out
def visual_prediction_forward_convnext(self, x, masks):
batch, num_query, channel = x.shape
x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
x = self.clip_model.visual.trunk.head(x)
x = self.clip_model.visual.head(x)
return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640
def visual_prediction_forward_resnet(self, x, masks):
batch, channel, height, width = x.shape
if masks.shape[-2] != height or masks.shape[-1] != width:
masks = F.inteprolate(masks, size=(height, width), mode='bilinear', align_corners=False)
num_masks = masks.shape[1]
positional_embedding = self.clip_model.visual.attnpool.positional_embedding.to(x.dtype)
spatial_pos_embed = positional_embedding[1:, None, :] # HW x 1 x C
orig_size = int(math.sqrt(spatial_pos_embed.shape[0]))
spatial_pos_embed = spatial_pos_embed.permute(1, 2, 0).reshape(1, channel, orig_size, orig_size)
spatial_pos_embed = F.interpolate(spatial_pos_embed, size=(height, width), mode='bilinear', align_corners=False) # 1 x C x H x W
spatial_pos_embed = spatial_pos_embed.permute(2, 3, 0, 1).reshape(height*width, 1, channel)
x = x.reshape(batch, channel, height * width).permute(2, 0, 1) # BCHW -> (HW)BC
key_value = x + spatial_pos_embed
masks = masks.reshape(batch, num_masks, height * width)
masks = (masks > 0).to(masks.dtype)
query = x.mean(0, keepdim=True) + positional_embedding[:1, None, :]
query = query.repeat_interleave(num_masks, dim=0)
attn_mask = masks < 0.5
attn_mask = attn_mask.unsqueeze(1).expand(-1, self.clip_model.visual.attnpool.num_heads, -1, -1)
attn_mask = attn_mask.reshape(batch * self.clip_model.visual.attnpool.num_heads,
query.shape[0], key_value.shape[0])
x = F.multi_head_attention_forward(
query=query, key=key_value, value=key_value,
embed_dim_to_check=key_value.shape[-1],
num_heads=self.clip_model.visual.attnpool.num_heads,
q_proj_weight=self.clip_model.visual.attnpool.q_proj.weight,
k_proj_weight=self.clip_model.visual.attnpool.k_proj.weight,
v_proj_weight=self.clip_model.visual.attnpool.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.clip_model.visual.attnpool.q_proj.bias,
self.clip_model.visual.attnpool.k_proj.bias,
self.clip_model.visual.attnpool.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0.,
out_proj_weight=self.clip_model.visual.attnpool.c_proj.weight,
out_proj_bias=self.clip_model.visual.attnpool.c_proj.bias,
use_separate_proj_weight=True,
training=self.clip_model.visual.attnpool.training,
need_weights=False,
attn_mask=attn_mask
)[0].permute(1, 0, 2) # B x N x C
return x
def get_text_classifier(self, text_list, device):
self.eval()
with torch.no_grad():
# reference for templates: https://github.com/mlfoundations/open_clip/blob/91f6cce16b7bee90b3b5d38ca305b5b3b67cc200/src/training/imagenet_zeroshot_data.py
text_tokens = self.tokenize_text(text_list)
text_tokens = text_tokens.to(device)
# we return un-normalized text feature.
text_features = self.encode_text(text_tokens, normalize=False)
return text_features
def forward(self, x):
self.eval()
with torch.no_grad():
return self.extract_features(x)
@property
def dim_latent(self):
return self.clip_model.text_projection.shape[-1]
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in ["stem", "res2", "res3", "res4", "res5", "clip_embedding"]
}
@property
def size_divisibility(self):
return -1