Spaces:
Running
on
A10G
Running
on
A10G
汐知
commited on
Commit
·
d8c7468
1
Parent(s):
240d951
update
Browse files- .DS_Store +0 -0
- app.py +22 -12
- configs/demo.yaml +1 -0
- iseg/coarse_mask_refine_util.py +285 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
#sys.path.append('.')
|
4 |
-
#os.system("pip install gradio==3.50.2")
|
5 |
import cv2
|
6 |
import einops
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
import random
|
10 |
import gradio as gr
|
11 |
-
#print(gr.__version__)
|
12 |
-
|
13 |
import albumentations as A
|
14 |
from PIL import Image
|
15 |
import torchvision.transforms as T
|
@@ -20,6 +16,7 @@ from omegaconf import OmegaConf
|
|
20 |
from cldm.hack import disable_verbosity, enable_sliced_attention
|
21 |
from huggingface_hub import snapshot_download
|
22 |
|
|
|
23 |
snapshot_download(repo_id="xichenhku/AnyDoor_models", local_dir="./AnyDoor_models")
|
24 |
|
25 |
|
@@ -35,8 +32,7 @@ if save_memory:
|
|
35 |
config = OmegaConf.load('./configs/demo.yaml')
|
36 |
model_ckpt = config.pretrained_model
|
37 |
model_config = config.config_file
|
38 |
-
|
39 |
-
|
40 |
|
41 |
|
42 |
model = create_model(model_config ).cpu()
|
@@ -44,6 +40,13 @@ model.load_state_dict(load_state_dict(model_ckpt, location='cuda'))
|
|
44 |
model = model.cuda()
|
45 |
ddim_sampler = DDIMSampler(model)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
|
49 |
H1, W1, H2, W2 = extra_sizes
|
@@ -222,6 +225,13 @@ ref_list.sort()
|
|
222 |
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
|
223 |
image_list.sort()
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
def mask_image(image, mask):
|
226 |
blanc = np.ones_like(image) * 255
|
227 |
mask = np.stack([mask,mask,mask],-1) / 255
|
@@ -242,6 +252,11 @@ def run_local(base,
|
|
242 |
ref_mask = np.asarray(ref_mask)
|
243 |
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
|
244 |
|
|
|
|
|
|
|
|
|
|
|
245 |
processed_item = process_pairs(ref_image.copy(), ref_mask.copy(), image.copy(), mask.copy(), max_ratio = 0.8)
|
246 |
masked_ref = (processed_item['ref']*255)
|
247 |
|
@@ -254,15 +269,13 @@ def run_local(base,
|
|
254 |
masked_ref = cv2.resize(masked_ref.astype(np.uint8), (512,512))
|
255 |
return [synthesis]
|
256 |
|
257 |
-
|
258 |
-
|
259 |
with gr.Blocks() as demo:
|
260 |
with gr.Column():
|
261 |
gr.Markdown("# Play with AnyDoor to Teleport your Target Objects! ")
|
262 |
with gr.Row():
|
263 |
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
|
264 |
with gr.Accordion("Advanced Option", open=True):
|
265 |
-
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
266 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
267 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1)
|
268 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=5.0, step=0.1)
|
@@ -270,9 +283,6 @@ with gr.Blocks() as demo:
|
|
270 |
gr.Markdown(" Higher guidance-scale makes higher fidelity, while lower guidance-scale leads to more harmonized blending.")
|
271 |
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
gr.Markdown("# Upload / Select Images for the Background (left) and Reference Object (right)")
|
277 |
gr.Markdown("### Your could draw coarse masks on the background to indicate the desired location and shape.")
|
278 |
gr.Markdown("### <u>Do not forget</u> to annotate the target object on the reference image.")
|
|
|
1 |
import os
|
2 |
import sys
|
|
|
|
|
3 |
import cv2
|
4 |
import einops
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
import random
|
8 |
import gradio as gr
|
|
|
|
|
9 |
import albumentations as A
|
10 |
from PIL import Image
|
11 |
import torchvision.transforms as T
|
|
|
16 |
from cldm.hack import disable_verbosity, enable_sliced_attention
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
19 |
+
|
20 |
snapshot_download(repo_id="xichenhku/AnyDoor_models", local_dir="./AnyDoor_models")
|
21 |
|
22 |
|
|
|
32 |
config = OmegaConf.load('./configs/demo.yaml')
|
33 |
model_ckpt = config.pretrained_model
|
34 |
model_config = config.config_file
|
35 |
+
use_interactive_seg = config.config_file
|
|
|
36 |
|
37 |
|
38 |
model = create_model(model_config ).cpu()
|
|
|
40 |
model = model.cuda()
|
41 |
ddim_sampler = DDIMSampler(model)
|
42 |
|
43 |
+
if use_interactive_seg:
|
44 |
+
from iseg.coarse_mask_refine_util import BaselineModel
|
45 |
+
model_path = './iseg/coarse_mask_refine.pth'
|
46 |
+
iseg_model = BaselineModel().eval()
|
47 |
+
weights = torch.load(model_path , map_location='cpu')['state_dict']
|
48 |
+
iseg_model.load_state_dict(weights, strict= True)
|
49 |
+
|
50 |
|
51 |
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
|
52 |
H1, W1, H2, W2 = extra_sizes
|
|
|
225 |
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
|
226 |
image_list.sort()
|
227 |
|
228 |
+
def process_image_mask(image_np, mask_np):
|
229 |
+
img = torch.from_numpy(image_np.transpose((2, 0, 1)))
|
230 |
+
img_ten = img.float().div(255).unsqueeze(0)
|
231 |
+
mask_ten = torch.from_numpy(mask_np).float().unsqueeze(0).unsqueeze(0)
|
232 |
+
return img_ten, mask_ten
|
233 |
+
|
234 |
+
|
235 |
def mask_image(image, mask):
|
236 |
blanc = np.ones_like(image) * 255
|
237 |
mask = np.stack([mask,mask,mask],-1) / 255
|
|
|
252 |
ref_mask = np.asarray(ref_mask)
|
253 |
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
|
254 |
|
255 |
+
# refine the user annotated coarse mask
|
256 |
+
if use_interactive_seg:
|
257 |
+
img_ten, mask_ten = process_image_mask(ref_image, ref_mask)
|
258 |
+
ref_mask = iseg_model(img_ten, mask_ten)['instances'][0,0].detach().numpy() > 0.5
|
259 |
+
|
260 |
processed_item = process_pairs(ref_image.copy(), ref_mask.copy(), image.copy(), mask.copy(), max_ratio = 0.8)
|
261 |
masked_ref = (processed_item['ref']*255)
|
262 |
|
|
|
269 |
masked_ref = cv2.resize(masked_ref.astype(np.uint8), (512,512))
|
270 |
return [synthesis]
|
271 |
|
|
|
|
|
272 |
with gr.Blocks() as demo:
|
273 |
with gr.Column():
|
274 |
gr.Markdown("# Play with AnyDoor to Teleport your Target Objects! ")
|
275 |
with gr.Row():
|
276 |
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
|
277 |
with gr.Accordion("Advanced Option", open=True):
|
278 |
+
#num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
279 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
280 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1)
|
281 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=5.0, step=0.1)
|
|
|
283 |
gr.Markdown(" Higher guidance-scale makes higher fidelity, while lower guidance-scale leads to more harmonized blending.")
|
284 |
|
285 |
|
|
|
|
|
|
|
286 |
gr.Markdown("# Upload / Select Images for the Background (left) and Reference Object (right)")
|
287 |
gr.Markdown("### Your could draw coarse masks on the background to indicate the desired location and shape.")
|
288 |
gr.Markdown("### <u>Do not forget</u> to annotate the target object on the reference image.")
|
configs/demo.yaml
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
pretrained_model: ./AnyDoor_models/general_v0.1/general_v0.1.ckpt
|
2 |
config_file: configs/anydoor.yaml
|
3 |
save_memory: False
|
|
|
|
1 |
pretrained_model: ./AnyDoor_models/general_v0.1/general_v0.1.ckpt
|
2 |
config_file: configs/anydoor.yaml
|
3 |
save_memory: False
|
4 |
+
use_interactive_seg: True
|
iseg/coarse_mask_refine_util.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MobileNet and MobileNetV2."""
|
2 |
+
'''
|
3 |
+
Code adopted from https://github.com/LikeLy-Journey/SegmenTron/blob/master/segmentron/models/backbones/mobilenet.py
|
4 |
+
'''
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
# ============ Basic Blocks ============
|
10 |
+
|
11 |
+
class _ConvBNReLU(nn.Module):
|
12 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
|
13 |
+
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d):
|
14 |
+
super(_ConvBNReLU, self).__init__()
|
15 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
|
16 |
+
self.bn = norm_layer(out_channels)
|
17 |
+
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = self.conv(x)
|
21 |
+
x = self.bn(x)
|
22 |
+
x = self.relu(x)
|
23 |
+
return x
|
24 |
+
|
25 |
+
class _DepthwiseConv(nn.Module):
|
26 |
+
"""conv_dw in MobileNet"""
|
27 |
+
|
28 |
+
def __init__(self, in_channels, out_channels, stride, norm_layer=nn.BatchNorm2d, **kwargs):
|
29 |
+
super(_DepthwiseConv, self).__init__()
|
30 |
+
self.conv = nn.Sequential(
|
31 |
+
_ConvBNReLU(in_channels, in_channels, 3, stride, 1, groups=in_channels, norm_layer=norm_layer),
|
32 |
+
_ConvBNReLU(in_channels, out_channels, 1, norm_layer=norm_layer))
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return self.conv(x)
|
36 |
+
|
37 |
+
|
38 |
+
class InvertedResidual(nn.Module):
|
39 |
+
def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, norm_layer=nn.BatchNorm2d):
|
40 |
+
super(InvertedResidual, self).__init__()
|
41 |
+
assert stride in [1, 2]
|
42 |
+
self.use_res_connect = stride == 1 and in_channels == out_channels
|
43 |
+
|
44 |
+
layers = list()
|
45 |
+
inter_channels = int(round(in_channels * expand_ratio))
|
46 |
+
if expand_ratio != 1:
|
47 |
+
# pw
|
48 |
+
layers.append(_ConvBNReLU(in_channels, inter_channels, 1, relu6=True, norm_layer=norm_layer))
|
49 |
+
layers.extend([
|
50 |
+
# dw
|
51 |
+
_ConvBNReLU(inter_channels, inter_channels, 3, stride, dilation, dilation,
|
52 |
+
groups=inter_channels, relu6=True, norm_layer=norm_layer),
|
53 |
+
# pw-linear
|
54 |
+
nn.Conv2d(inter_channels, out_channels, 1, bias=False),
|
55 |
+
norm_layer(out_channels)])
|
56 |
+
self.conv = nn.Sequential(*layers)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
if self.use_res_connect:
|
60 |
+
return x + self.conv(x)
|
61 |
+
else:
|
62 |
+
return self.conv(x)
|
63 |
+
|
64 |
+
|
65 |
+
# ============ Backbone ============
|
66 |
+
|
67 |
+
class MobileNetV2(nn.Module):
|
68 |
+
def __init__(self, num_classes=1000, norm_layer=nn.BatchNorm2d):
|
69 |
+
super(MobileNetV2, self).__init__()
|
70 |
+
output_stride = 8
|
71 |
+
self.multiplier = 1
|
72 |
+
if output_stride == 32:
|
73 |
+
dilations = [1, 1]
|
74 |
+
elif output_stride == 16:
|
75 |
+
dilations = [1, 2]
|
76 |
+
elif output_stride == 8:
|
77 |
+
dilations = [2, 4]
|
78 |
+
else:
|
79 |
+
raise NotImplementedError
|
80 |
+
inverted_residual_setting = [
|
81 |
+
# t, c, n, s
|
82 |
+
[1, 16, 1, 1],
|
83 |
+
[6, 24, 2, 2],
|
84 |
+
[6, 32, 3, 2],
|
85 |
+
[6, 64, 4, 2],
|
86 |
+
[6, 96, 3, 1],
|
87 |
+
[6, 160, 3, 2],
|
88 |
+
[6, 320, 1, 1]]
|
89 |
+
# building first layer
|
90 |
+
input_channels = int(32 * self.multiplier) if self.multiplier > 1.0 else 32
|
91 |
+
# last_channels = int(1280 * multiplier) if multiplier > 1.0 else 1280
|
92 |
+
self.conv1 = _ConvBNReLU(3, input_channels, 3, 2, 1, relu6=True, norm_layer=norm_layer)
|
93 |
+
|
94 |
+
# building inverted residual blocks
|
95 |
+
self.planes = input_channels
|
96 |
+
self.block1 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[0:1],
|
97 |
+
norm_layer=norm_layer)
|
98 |
+
self.block2 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[1:2],
|
99 |
+
norm_layer=norm_layer)
|
100 |
+
self.block3 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[2:3],
|
101 |
+
norm_layer=norm_layer)
|
102 |
+
self.block4 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[3:5],
|
103 |
+
dilations[0], norm_layer=norm_layer)
|
104 |
+
self.block5 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[5:],
|
105 |
+
dilations[1], norm_layer=norm_layer)
|
106 |
+
self.last_inp_channels = self.planes
|
107 |
+
|
108 |
+
# building last several layers
|
109 |
+
# features = list()
|
110 |
+
# features.append(_ConvBNReLU(input_channels, last_channels, 1, relu6=True, norm_layer=norm_layer))
|
111 |
+
# features.append(nn.AdaptiveAvgPool2d(1))
|
112 |
+
# self.features = nn.Sequential(*features)
|
113 |
+
#
|
114 |
+
# self.classifier = nn.Sequential(
|
115 |
+
# nn.Dropout2d(0.2),
|
116 |
+
# nn.Linear(last_channels, num_classes))
|
117 |
+
|
118 |
+
# weight initialization
|
119 |
+
for m in self.modules():
|
120 |
+
if isinstance(m, nn.Conv2d):
|
121 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
122 |
+
if m.bias is not None:
|
123 |
+
nn.init.zeros_(m.bias)
|
124 |
+
elif isinstance(m, nn.BatchNorm2d):
|
125 |
+
nn.init.ones_(m.weight)
|
126 |
+
nn.init.zeros_(m.bias)
|
127 |
+
elif isinstance(m, nn.Linear):
|
128 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
129 |
+
if m.bias is not None:
|
130 |
+
nn.init.zeros_(m.bias)
|
131 |
+
|
132 |
+
def _make_layer(self, block, planes, inverted_residual_setting, dilation=1, norm_layer=nn.BatchNorm2d):
|
133 |
+
features = list()
|
134 |
+
for t, c, n, s in inverted_residual_setting:
|
135 |
+
out_channels = int(c * self.multiplier)
|
136 |
+
stride = s if dilation == 1 else 1
|
137 |
+
features.append(block(planes, out_channels, stride, t, dilation, norm_layer))
|
138 |
+
planes = out_channels
|
139 |
+
for i in range(n - 1):
|
140 |
+
features.append(block(planes, out_channels, 1, t, norm_layer=norm_layer))
|
141 |
+
planes = out_channels
|
142 |
+
self.planes = planes
|
143 |
+
return nn.Sequential(*features)
|
144 |
+
|
145 |
+
def forward(self, x, side_feature):
|
146 |
+
x = self.conv1(x)
|
147 |
+
x = x + side_feature
|
148 |
+
x = self.block1(x)
|
149 |
+
c1 = self.block2(x)
|
150 |
+
c2 = self.block3(c1)
|
151 |
+
c3 = self.block4(c2)
|
152 |
+
c4 = self.block5(c3)
|
153 |
+
# x = self.features(x)
|
154 |
+
# x = self.classifier(x.view(x.size(0), x.size(1)))
|
155 |
+
return c1, c2, c3, c4
|
156 |
+
|
157 |
+
def mobilenet_v2(norm_layer=nn.BatchNorm2d):
|
158 |
+
return MobileNetV2(norm_layer=norm_layer)
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
# ============ Segmentor ============
|
163 |
+
|
164 |
+
class LRASPP(nn.Module):
|
165 |
+
"""Lite R-ASPP"""
|
166 |
+
|
167 |
+
def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs):
|
168 |
+
super(LRASPP, self).__init__()
|
169 |
+
self.b0 = nn.Sequential(
|
170 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
171 |
+
norm_layer(out_channels),
|
172 |
+
nn.ReLU(True)
|
173 |
+
)
|
174 |
+
self.b1 = nn.Sequential(
|
175 |
+
nn.AdaptiveAvgPool2d((2,2)),
|
176 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
177 |
+
nn.Sigmoid(),
|
178 |
+
)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
size = x.size()[2:]
|
182 |
+
feat1 = self.b0(x)
|
183 |
+
feat2 = self.b1(x)
|
184 |
+
feat2 = F.interpolate(feat2, size, mode='bilinear', align_corners=True)
|
185 |
+
x = feat1 * feat2
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
class MobileSeg(nn.Module):
|
191 |
+
def __init__(self, nclass=1, **kwargs):
|
192 |
+
super(MobileSeg, self).__init__()
|
193 |
+
self.backbone = mobilenet_v2()
|
194 |
+
self.lraspp = LRASPP(320,128)
|
195 |
+
self.fusion_conv1 = nn.Conv2d(128,16,1,1,0)
|
196 |
+
self.fusion_conv2 = nn.Conv2d(24,16,1,1,0)
|
197 |
+
self.head = nn.Conv2d(16,nclass,1,1,0)
|
198 |
+
self.aux_head = nn.Conv2d(16,nclass,1,1,0)
|
199 |
+
|
200 |
+
def forward(self, x, side_feature):
|
201 |
+
x4, _, _, x8 = self.backbone(x, side_feature)
|
202 |
+
x8 = self.lraspp(x8)
|
203 |
+
x8 = F.interpolate(x8, x4.size()[2:], mode='bilinear', align_corners=True)
|
204 |
+
x8 = self.fusion_conv1(x8)
|
205 |
+
pred_aux = self.aux_head(x8)
|
206 |
+
|
207 |
+
x4 = self.fusion_conv2(x4)
|
208 |
+
x = x4 + x8
|
209 |
+
pred = self.head(x)
|
210 |
+
return pred, pred_aux, x
|
211 |
+
|
212 |
+
def load_pretrained_weights(self, path_to_weights= ' '):
|
213 |
+
backbone_state_dict = self.backbone.state_dict()
|
214 |
+
pretrained_state_dict = torch.load(path_to_weights, map_location='cpu')
|
215 |
+
ckpt_keys = set(pretrained_state_dict.keys())
|
216 |
+
own_keys = set(backbone_state_dict.keys())
|
217 |
+
missing_keys = own_keys - ckpt_keys
|
218 |
+
unexpected_keys = ckpt_keys - own_keys
|
219 |
+
print('Loading Mobilnet V2')
|
220 |
+
print('Missing Keys: ', missing_keys)
|
221 |
+
print('Unexpected Keys: ', unexpected_keys)
|
222 |
+
backbone_state_dict.update(pretrained_state_dict)
|
223 |
+
self.backbone.load_state_dict(backbone_state_dict, strict= False)
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
class ScaleLayer(nn.Module):
|
229 |
+
def __init__(self, init_value=1.0, lr_mult=1):
|
230 |
+
super().__init__()
|
231 |
+
self.lr_mult = lr_mult
|
232 |
+
self.scale = nn.Parameter(
|
233 |
+
torch.full((1,), init_value / lr_mult, dtype=torch.float32)
|
234 |
+
)
|
235 |
+
|
236 |
+
def forward(self, x):
|
237 |
+
scale = torch.abs(self.scale * self.lr_mult)
|
238 |
+
return x * scale
|
239 |
+
|
240 |
+
|
241 |
+
# ============ Interactive Segmentor ============
|
242 |
+
|
243 |
+
class BaselineModel(nn.Module):
|
244 |
+
def __init__(self, backbone_lr_mult=0.1,
|
245 |
+
norm_layer=nn.BatchNorm2d, **kwargs):
|
246 |
+
super().__init__()
|
247 |
+
self.feature_extractor = MobileSeg()
|
248 |
+
side_feature_ch = 32
|
249 |
+
mt_layers = [
|
250 |
+
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1),
|
251 |
+
nn.LeakyReLU(negative_slope=0.2),
|
252 |
+
nn.Conv2d(in_channels=16, out_channels=side_feature_ch, kernel_size=3, stride=1, padding=1),
|
253 |
+
ScaleLayer(init_value=0.05, lr_mult=1)
|
254 |
+
]
|
255 |
+
self.maps_transform = nn.Sequential(*mt_layers)
|
256 |
+
|
257 |
+
|
258 |
+
def backbone_forward(self, image, coord_features=None):
|
259 |
+
mask, mask_aux, feature = self.feature_extractor(image, coord_features)
|
260 |
+
return {'instances': mask, 'instances_aux':mask_aux, 'feature': feature}
|
261 |
+
|
262 |
+
|
263 |
+
def prepare_input(self, image):
|
264 |
+
prev_mask = torch.zeros_like(image)[:,:1,:,:]
|
265 |
+
return image, prev_mask
|
266 |
+
|
267 |
+
def forward(self, image, coarse_mask):
|
268 |
+
image, prev_mask = self.prepare_input(image)
|
269 |
+
coord_features = torch.cat((prev_mask, coarse_mask, coarse_mask * 0.0), dim=1)
|
270 |
+
click_map = coord_features[:,1:,:,:]
|
271 |
+
|
272 |
+
coord_features = self.maps_transform(coord_features)
|
273 |
+
outputs = self.backbone_forward(image, coord_features)
|
274 |
+
|
275 |
+
pred = nn.functional.interpolate(
|
276 |
+
outputs['instances'],
|
277 |
+
size=image.size()[2:],
|
278 |
+
mode='bilinear', align_corners=True
|
279 |
+
)
|
280 |
+
|
281 |
+
outputs['instances'] = torch.sigmoid(pred)
|
282 |
+
return outputs
|
283 |
+
|
284 |
+
|
285 |
+
|