File size: 13,486 Bytes
81d8e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841eb91
81d8e7c
9cfc285
81d8e7c
 
5cfb194
9987428
dfe48d2
9987428
dfe48d2
5cfb194
61f1cb9
81d8e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cfc285
81d8e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cfb194
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import gradio as gr
import torch
import torch.nn.functional as F
from safetensors.numpy import save_file, load_file
from omegaconf import OmegaConf
from transformers import AutoConfig
import cv2
from PIL import Image
import numpy as np
import json
import os
#
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInpaintPipeline, DDIMScheduler, AutoencoderKL
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DDIMScheduler
from diffusers import DDIMScheduler, DDPMScheduler, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
#
from models.pipeline_mimicbrush import MimicBrushPipeline
from models.ReferenceNet import ReferenceNet
from models.depth_guider import DepthGuider
from mimicbrush import MimicBrush_RefNet
from data_utils import *
from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
import spaces



sd_dir = ms_snapshot_download('xichen/cleansd', cache_dir='./modelscope')
print('=== Pretrained SD weights downloaded ===')
model_dir = ms_snapshot_download('xichen/MimicBrush', cache_dir='./modelscope')
print('=== MimicBrush weights downloaded ===')

val_configs = OmegaConf.load('./configs/inference.yaml')

# === import Depth Anything ===
import sys
sys.path.append("./depthanything")
from torchvision.transforms import Compose
from depthanything.fast_import import depth_anything_model 
from depthanything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
transform = Compose([
    Resize(
        width=518,
        height=518,
        resize_target=False,
        keep_aspect_ratio=True,
        ensure_multiple_of=14,
        resize_method='lower_bound',
        image_interpolation_method=cv2.INTER_CUBIC,
    ),
    NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    PrepareForNet(),
])
depth_anything_model.load_state_dict(torch.load(val_configs.model_path.depth_model))



# === load the checkpoint ===
base_model_path = val_configs.model_path.pretrained_imitativer_path
vae_model_path = val_configs.model_path.pretrained_vae_name_or_path
image_encoder_path = val_configs.model_path.image_encoder_path
ref_model_path = val_configs.model_path.pretrained_reference_path
mimicbrush_ckpt = val_configs.model_path.mimicbrush_ckpt_path
device = "cuda"



def pad_img_to_square(original_image, is_mask=False):
    width, height = original_image.size
    
    if height == width:
        return original_image
    
    if height > width:
        padding = (height - width) // 2
        new_size = (height, height)
    else:
        padding = (width - height) // 2
        new_size = (width, width)
    
    if is_mask:
        new_image = Image.new("RGB", new_size, "black")
    else:
        new_image = Image.new("RGB", new_size, "white")
    
    if height > width:
        new_image.paste(original_image, (padding, 0))
    else:
        new_image.paste(original_image, (0, padding))
    return new_image


def collage_region(low, high, mask):
    mask = (np.array(mask) > 128).astype(np.uint8)
    low = np.array(low).astype(np.uint8) 
    low = (low * 0).astype(np.uint8) 
    high = np.array(high).astype(np.uint8)
    mask_3 = mask 
    collage = low * mask_3 + high * (1-mask_3)
    collage = Image.fromarray(collage)
    return collage


def resize_image_keep_aspect_ratio(image, target_size = 512):
    height, width = image.shape[:2]
    if height > width:
        new_height = target_size
        new_width = int(width * (target_size / height))
    else:
        new_width = target_size
        new_height = int(height * (target_size / width))
    resized_image = cv2.resize(image, (new_width, new_height))
    return resized_image


def crop_padding_and_resize(ori_image, square_image):
    ori_height, ori_width, _ = ori_image.shape
    scale = max(ori_height / square_image.shape[0], ori_width / square_image.shape[1])
    resized_square_image = cv2.resize(square_image, (int(square_image.shape[1] * scale), int(square_image.shape[0] * scale)))
    padding_size = max(resized_square_image.shape[0] - ori_height, resized_square_image.shape[1] - ori_width)
    if ori_height < ori_width:
        top = padding_size // 2
        bottom = resized_square_image.shape[0] - (padding_size - top)
        cropped_image = resized_square_image[top:bottom, :,:]
    else:
        left = padding_size // 2
        right = resized_square_image.shape[1] - (padding_size - left)
        cropped_image = resized_square_image[:, left:right,:]
    return cropped_image


def vis_mask(image, mask):
    # mask 3 channle 255
    mask = mask[:,:,0]
    mask_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Draw outlines, using random colors
    outline_opacity = 0.5
    outline_thickness = 5
    outline_color = np.concatenate([ [255,255,255], [outline_opacity]  ])

    white_mask = np.ones_like(image) * 255

    mask_bin_3 = np.stack([mask,mask,mask],-1) > 128
    alpha = 0.5 
    image = ( white_mask * alpha + image * (1-alpha) ) * mask_bin_3 + image * (1-mask_bin_3)
    cv2.polylines(image, mask_contours, True, outline_color, outline_thickness, cv2.LINE_AA)
    return image 



noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", in_channels=13, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(dtype=torch.float16)

pipe = MimicBrushPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    unet=unet,
    feature_extractor=None,
    safety_checker=None,
)

depth_guider = DepthGuider()
referencenet = ReferenceNet.from_pretrained(ref_model_path, subfolder="unet").to(dtype=torch.float16)
mimicbrush_model = MimicBrush_RefNet(pipe, image_encoder_path, mimicbrush_ckpt,  depth_anything_model, depth_guider, referencenet, device)
mask_processor = VaeImageProcessor(vae_scale_factor=1, do_normalize=False, do_binarize=True, do_convert_grayscale=True)

@spaces.GPU
def infer_single(ref_image, target_image, target_mask, seed = -1, num_inference_steps=50, guidance_scale = 5, enable_shape_control = False):
    #return ref_image
    """
    mask: 0/1 1-channel  np.array
    image: rgb           np.array
    """
    ref_image = ref_image.astype(np.uint8)
    target_image = target_image.astype(np.uint8)
    target_mask  = target_mask .astype(np.uint8)

    ref_image = Image.fromarray(ref_image.astype(np.uint8)) 
    ref_image = pad_img_to_square(ref_image)

    target_image = pad_img_to_square(Image.fromarray(target_image))
    target_image_low = target_image


    target_mask = np.stack([target_mask,target_mask,target_mask],-1).astype(np.uint8) * 255
    target_mask_np = target_mask.copy()
    target_mask = Image.fromarray(target_mask) 
    target_mask = pad_img_to_square(target_mask, True)

    target_image_ori = target_image.copy()
    target_image = collage_region(target_image_low, target_image, target_mask)
    

    depth_image = target_image_ori.copy()
    depth_image = np.array(depth_image)
    depth_image = transform({'image': depth_image})['image']
    depth_image = torch.from_numpy(depth_image).unsqueeze(0) / 255

    if not enable_shape_control:
        depth_image = depth_image * 0

    mask_pt = mask_processor.preprocess(target_mask, height=512, width=512)

    pred, depth_pred = mimicbrush_model.generate(pil_image=ref_image, depth_image = depth_image, num_samples=1, num_inference_steps=num_inference_steps,
                            seed=seed, image=target_image, mask_image=mask_pt, strength=1.0, guidance_scale=guidance_scale)


    depth_pred = F.interpolate(depth_pred, size=(512,512), mode = 'bilinear', align_corners=True)[0][0]
    depth_pred = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
    depth_pred = depth_pred.detach().cpu().numpy().astype(np.uint8)
    depth_pred = cv2.applyColorMap(depth_pred, cv2.COLORMAP_INFERNO)[:,:,::-1]

    pred = pred[0]
    pred = np.array(pred).astype(np.uint8)
    return pred, depth_pred.astype(np.uint8)


def inference_single_image(ref_image, 
                           tar_image, 
                           tar_mask, 
                           ddim_steps, 
                           scale, 
                           seed,
                           enable_shape_control,
                           ):
    if seed == -1:
        seed = np.random.randint(10000)
    pred, depth_pred = infer_single(ref_image, tar_image, tar_mask, seed, num_inference_steps=ddim_steps, guidance_scale = scale, enable_shape_control = enable_shape_control)
    return pred, depth_pred



def run_local(base,
              ref,
              *args):
    image = base["image"].convert("RGB")
    mask = base["mask"].convert("L")
    image = np.asarray(image)
    mask = np.asarray(mask)
    mask = np.where(mask > 128, 1, 0).astype(np.uint8)
    

    ref_image = ref.convert("RGB")
    ref_image = np.asarray(ref_image)

    if mask.sum() == 0:
        raise gr.Error('No mask for the background image.')
    
    mask_3 = np.stack([mask,mask,mask],-1).astype(np.uint8) * 255

    mask_alpha = mask_3.copy()
    for i in range(10):
        mask_alpha = cv2.GaussianBlur(mask_alpha, (3, 3), 0)
    
    synthesis, depth_pred = inference_single_image(ref_image.copy(), image.copy(), mask.copy(), *args)


    synthesis = crop_padding_and_resize(image, synthesis)
    depth_pred = crop_padding_and_resize(image, depth_pred)


    mask_3_bin = mask_alpha / 255
    synthesis = synthesis * mask_3_bin + image * (1-mask_3_bin)

    vis_source = vis_mask(image, mask_3).astype(np.uint8)
    return [synthesis.astype(np.uint8), depth_pred.astype(np.uint8), vis_source, mask_3]



with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("#  MimicBrush: Zero-shot Image Editing with Reference Imitation ")
        with gr.Row():
            baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
            with gr.Accordion("Advanced Option", open=True):
                num_samples = 1
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=-30.0, maximum=30.0, value=5.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1)
                enable_shape_control = gr.Checkbox(label='Keep the original shape', value=False, interactive = True)
                
                gr.Markdown("### Tutorial")
                gr.Markdown("1. Upload the source image and the reference image")
                gr.Markdown("2. Mask the to-edit region on the source image  ")
                gr.Markdown("3. Click generate ")
                gr.Markdown("#### You shoud click \"keep the original shape\" to conduct texture transfer  ")

    
        gr.Markdown("# Upload the source image and reference image")
        gr.Markdown("### Tips: you could adjust the brush size by at the top right")

        with gr.Row():
            base = gr.Image(label="Background", source="upload", tool="sketch", type="pil", height=512, brush_color='#FFFFFF', mask_opacity=0.5, brush_radius = 100)
            ref = gr.Image(label="Reference", source="upload", type="pil", height=512 )
        run_local_button = gr.Button(label="Generate", value="Run")
        


    with gr.Row():
        gr.Examples(
        examples=[
            [
                './demo_example/005_source.png',
                './demo_example/005_reference.png', 
            ],
            [
                './demo_example/000_source.png',
                './demo_example/000_reference.png', 
            ],
            [
                './demo_example/001_source.png',
                './demo_example/001_reference.png', 
            ],
            [
                './demo_example/002_source.png',
                './demo_example/002_reference.png', 
            ],
            [
                './demo_example/003_source.png',
                './demo_example/003_reference.png', 
            ],     
            [
                './demo_example/004_source.png',
                './demo_example/004_reference.png', 
            ],
            [
                './demo_example/006_source.png',
                './demo_example/006_reference.png', 
            ],
            [
                './demo_example/007_source.png',
                './demo_example/007_reference.png', 
            ],
        ],

        inputs=[
                base,
                ref
                    ],
                cache_examples=False,
                examples_per_page=100)


    run_local_button.click(fn=run_local, 
                           inputs=[base, 
                                   ref, 
                                   ddim_steps, 
                                   scale, 
                                   seed,
                                   enable_shape_control
                                   ], 
                           outputs=[baseline_gallery]
                        )

demo.launch(server_name="0.0.0.0")