MimicBrush / app.py
xichenhku's picture
Update app.py
0bab783 verified
raw
history blame
14.3 kB
import gradio as gr
import torch
import torch.nn.functional as F
from safetensors.numpy import save_file, load_file
from omegaconf import OmegaConf
from transformers import AutoConfig
import cv2
from PIL import Image
import numpy as np
import json
import os
#
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInpaintPipeline, DDIMScheduler, AutoencoderKL
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DDIMScheduler
from diffusers import DDIMScheduler, DDPMScheduler, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
#
from models.pipeline_mimicbrush import MimicBrushPipeline
from models.ReferenceNet import ReferenceNet
from models.depth_guider import DepthGuider
from mimicbrush import MimicBrush_RefNet
from data_utils import *
from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
import spaces
from huggingface_hub import snapshot_download
snapshot_download(repo_id="xichenhku/cleansd", local_dir="./cleansd")
print('=== Pretrained SD weights downloaded ===')
snapshot_download(repo_id="xichenhku/MimicBrush", local_dir="./MimicBrush")
print('=== MimicBrush weights downloaded ===')
#sd_dir = ms_snapshot_download('xichen/cleansd', cache_dir='./modelscope')
#print('=== Pretrained SD weights downloaded ===')
#model_dir = ms_snapshot_download('xichen/MimicBrush', cache_dir='./modelscope')
#print('=== MimicBrush weights downloaded ===')
val_configs = OmegaConf.load('./configs/inference.yaml')
# === import Depth Anything ===
import sys
sys.path.append("./depthanything")
from torchvision.transforms import Compose
from depthanything.fast_import import depth_anything_model
from depthanything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
depth_anything_model.load_state_dict(torch.load(val_configs.model_path.depth_model))
# === load the checkpoint ===
base_model_path = val_configs.model_path.pretrained_imitativer_path
vae_model_path = val_configs.model_path.pretrained_vae_name_or_path
image_encoder_path = val_configs.model_path.image_encoder_path
ref_model_path = val_configs.model_path.pretrained_reference_path
mimicbrush_ckpt = val_configs.model_path.mimicbrush_ckpt_path
device = "cuda"
def pad_img_to_square(original_image, is_mask=False):
width, height = original_image.size
if height == width:
return original_image
if height > width:
padding = (height - width) // 2
new_size = (height, height)
else:
padding = (width - height) // 2
new_size = (width, width)
if is_mask:
new_image = Image.new("RGB", new_size, "black")
else:
new_image = Image.new("RGB", new_size, "white")
if height > width:
new_image.paste(original_image, (padding, 0))
else:
new_image.paste(original_image, (0, padding))
return new_image
def collage_region(low, high, mask):
mask = (np.array(mask) > 128).astype(np.uint8)
low = np.array(low).astype(np.uint8)
low = (low * 0).astype(np.uint8)
high = np.array(high).astype(np.uint8)
mask_3 = mask
collage = low * mask_3 + high * (1-mask_3)
collage = Image.fromarray(collage)
return collage
def resize_image_keep_aspect_ratio(image, target_size = 512):
height, width = image.shape[:2]
if height > width:
new_height = target_size
new_width = int(width * (target_size / height))
else:
new_width = target_size
new_height = int(height * (target_size / width))
resized_image = cv2.resize(image, (new_width, new_height))
return resized_image
def crop_padding_and_resize(ori_image, square_image):
ori_height, ori_width, _ = ori_image.shape
scale = max(ori_height / square_image.shape[0], ori_width / square_image.shape[1])
resized_square_image = cv2.resize(square_image, (int(square_image.shape[1] * scale), int(square_image.shape[0] * scale)))
padding_size = max(resized_square_image.shape[0] - ori_height, resized_square_image.shape[1] - ori_width)
if ori_height < ori_width:
top = padding_size // 2
bottom = resized_square_image.shape[0] - (padding_size - top)
cropped_image = resized_square_image[top:bottom, :,:]
else:
left = padding_size // 2
right = resized_square_image.shape[1] - (padding_size - left)
cropped_image = resized_square_image[:, left:right,:]
return cropped_image
def vis_mask(image, mask):
# mask 3 channle 255
mask = mask[:,:,0]
mask_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw outlines, using random colors
outline_opacity = 0.5
outline_thickness = 5
outline_color = np.concatenate([ [255,255,255], [outline_opacity] ])
white_mask = np.ones_like(image) * 255
mask_bin_3 = np.stack([mask,mask,mask],-1) > 128
alpha = 0.5
image = ( white_mask * alpha + image * (1-alpha) ) * mask_bin_3 + image * (1-mask_bin_3)
cv2.polylines(image, mask_contours, True, outline_color, outline_thickness, cv2.LINE_AA)
return image
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", in_channels=13, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(dtype=torch.float16)
pipe = MimicBrushPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
unet=unet,
feature_extractor=None,
safety_checker=None,
)
depth_guider = DepthGuider()
referencenet = ReferenceNet.from_pretrained(ref_model_path, subfolder="unet").to(dtype=torch.float16)
mimicbrush_model = MimicBrush_RefNet(pipe, image_encoder_path, mimicbrush_ckpt, depth_anything_model, depth_guider, referencenet, device)
mask_processor = VaeImageProcessor(vae_scale_factor=1, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
@spaces.GPU
def infer_single(ref_image, target_image, target_mask, seed = -1, num_inference_steps=50, guidance_scale = 5, enable_shape_control = False):
#return ref_image
"""
mask: 0/1 1-channel np.array
image: rgb np.array
"""
ref_image = ref_image.astype(np.uint8)
target_image = target_image.astype(np.uint8)
target_mask = target_mask .astype(np.uint8)
ref_image = Image.fromarray(ref_image.astype(np.uint8))
ref_image = pad_img_to_square(ref_image)
target_image = pad_img_to_square(Image.fromarray(target_image))
target_image_low = target_image
target_mask = np.stack([target_mask,target_mask,target_mask],-1).astype(np.uint8) * 255
target_mask_np = target_mask.copy()
target_mask = Image.fromarray(target_mask)
target_mask = pad_img_to_square(target_mask, True)
target_image_ori = target_image.copy()
target_image = collage_region(target_image_low, target_image, target_mask)
depth_image = target_image_ori.copy()
depth_image = np.array(depth_image)
depth_image = transform({'image': depth_image})['image']
depth_image = torch.from_numpy(depth_image).unsqueeze(0) / 255
if not enable_shape_control:
depth_image = depth_image * 0
mask_pt = mask_processor.preprocess(target_mask, height=512, width=512)
pred, depth_pred = mimicbrush_model.generate(pil_image=ref_image, depth_image = depth_image, num_samples=1, num_inference_steps=num_inference_steps,
seed=seed, image=target_image, mask_image=mask_pt, strength=1.0, guidance_scale=guidance_scale)
depth_pred = F.interpolate(depth_pred, size=(512,512), mode = 'bilinear', align_corners=True)[0][0]
depth_pred = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
depth_pred = depth_pred.detach().cpu().numpy().astype(np.uint8)
depth_pred = cv2.applyColorMap(depth_pred, cv2.COLORMAP_INFERNO)[:,:,::-1]
pred = pred[0]
pred = np.array(pred).astype(np.uint8)
return pred, depth_pred.astype(np.uint8)
def inference_single_image(ref_image,
tar_image,
tar_mask,
ddim_steps,
scale,
seed,
enable_shape_control,
):
if seed == -1:
seed = np.random.randint(10000)
pred, depth_pred = infer_single(ref_image, tar_image, tar_mask, seed, num_inference_steps=ddim_steps, guidance_scale = scale, enable_shape_control = enable_shape_control)
return pred, depth_pred
def run_local(base,
ref,
*args):
image = base["background"].convert("RGB") #base["image"].convert("RGB")
mask = base["layers"][0] #base["mask"].convert("L")
image = np.asarray(image)
mask = np.asarray(mask)[:,:,-1]
#print(image.shape, mask.shape, mask.max(), mask.min())
mask = np.where(mask > 128, 1, 0).astype(np.uint8)
ref_image = ref.convert("RGB")
ref_image = np.asarray(ref_image)
if mask.sum() == 0:
raise gr.Error('No mask for the background image.')
mask_3 = np.stack([mask,mask,mask],-1).astype(np.uint8) * 255
mask_alpha = mask_3.copy()
for i in range(10):
mask_alpha = cv2.GaussianBlur(mask_alpha, (3, 3), 0)
synthesis, depth_pred = inference_single_image(ref_image.copy(), image.copy(), mask.copy(), *args)
synthesis = crop_padding_and_resize(image, synthesis)
depth_pred = crop_padding_and_resize(image, depth_pred)
mask_3_bin = mask_alpha / 255
synthesis = synthesis * mask_3_bin + image * (1-mask_3_bin)
vis_source = vis_mask(image, mask_3).astype(np.uint8)
return [synthesis.astype(np.uint8), depth_pred.astype(np.uint8), vis_source, mask_3]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# MimicBrush: Zero-shot Image Editing with Reference Imitation ")
with gr.Row():
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
with gr.Accordion("Advanced Option", open=True):
num_samples = 1
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=-30.0, maximum=30.0, value=5.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1)
enable_shape_control = gr.Checkbox(label='Keep the original shape', value=False, interactive = True)
gr.Markdown("### Tutorial")
gr.Markdown("1. Upload the source image and the reference image")
gr.Markdown("2. Select the \"draw button\" to mask the to-edit region on the source image ")
gr.Markdown("3. Click generate ")
gr.Markdown("#### You shoud click \"keep the original shape\" to conduct texture transfer ")
gr.Markdown("# Upload the source image and reference image")
gr.Markdown("### Tips: you could adjust the brush size")
with gr.Row():
base = gr.ImageEditor( label="Source",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"),
layers = False,
interactive=True
)
ref = gr.Image(label="Reference", sources="upload", type="pil", height=512)
run_local_button = gr.Button(value="Run")
with gr.Row():
gr.Examples(
examples=[
[
'./demo_example/005_source.png',
'./demo_example/005_reference.png',
0
],
[
'./demo_example/004_source.png',
'./demo_example/004_reference.png',
0
],
[
'./demo_example/000_source.png',
'./demo_example/000_reference.png',
0
],
[
'./demo_example/003_source.png',
'./demo_example/003_reference.png',
0
],
[
'./demo_example/006_source.png',
'./demo_example/006_reference.png',
0
],
[
'./demo_example/001_source.png',
'./demo_example/001_reference.png',
1
],
[
'./demo_example/002_source.png',
'./demo_example/002_reference.png',
1
],
[
'./demo_example/007_source.png',
'./demo_example/007_reference.png',
1
],
],
inputs=[
base,
ref,
enable_shape_control
],
cache_examples=False,
examples_per_page=100)
run_local_button.click(fn=run_local,
inputs=[base,
ref,
ddim_steps,
scale,
seed,
enable_shape_control
],
outputs=[baseline_gallery]
)
demo.launch(server_name="0.0.0.0")