File size: 16,795 Bytes
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
Misc functions, including distributed helpers, mostly from torchvision
"""
import glob
import math
import os
import time
import datetime
import random
from dataclasses import dataclass
from collections import defaultdict, deque
from typing import Callable, Optional
from PIL import Image
import numpy as np
import torch
import torch.distributed as dist
import torchvision
from accelerate import Accelerator
from omegaconf import DictConfig

from configs.structured import ProjectConfig



@dataclass
class TrainState:
    epoch: int = 0
    step: int = 0
    best_val: Optional[float] = None


def get_optimizer(cfg: ProjectConfig, model: torch.nn.Module, accelerator: Accelerator) -> torch.optim.Optimizer:
    """Gets optimizer from configs"""
    
    # Determine the learning rate
    if cfg.optimizer.scale_learning_rate_with_batch_size:
        lr = accelerator.state.num_processes * cfg.dataloader.batch_size * cfg.optimizer.lr
        print('lr = {ws} (num gpus) * {bs} (batch_size) * {blr} (base learning rate) = {lr}'.format(
            ws=accelerator.state.num_processes, bs=cfg.dataloader.batch_size, blr=cfg.optimizer.lr, lr=lr))
    else:  # scale base learning rate by batch size
        lr = cfg.optimizer.lr
        print('lr = {lr} (absolute learning rate)'.format(lr=lr))

    # Get optimizer parameters, excluding certain parameters from weight decay
    no_decay = ["bias", "LayerNorm.weight"]
    parameters = [
        {
            "params": [p for n, p in model.named_parameters() if p.requires_grad and not any(nd in n for nd in no_decay)],
            "weight_decay": cfg.optimizer.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if p.requires_grad and any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]

    # Construct optimizer
    if cfg.optimizer.type == 'torch':
        Optimizer: torch.optim.Optimizer = getattr(torch.optim, cfg.optimizer.name)
        optimizer = Optimizer(parameters, lr=lr, **cfg.optimizer.kwargs)
    elif cfg.optimizer.type == 'timm':
        from timm.optim import create_optimizer_v2
        optimizer = create_optimizer_v2(model_or_params=parameters, lr=lr, **cfg.optimizer.kwargs)
    elif cfg.optimizer.type == 'transformers':
        import transformers
        Optimizer: torch.optim.Optimizer = getattr(transformers, cfg.optimizer.name)
        optimizer = Optimizer(parameters, lr=lr, **cfg.optimizer.kwargs)
    else:
        raise NotImplementedError(f'Invalid optimizer configs: {cfg.optimizer}')

    return optimizer


def get_scheduler(cfg: ProjectConfig, optimizer: torch.optim.Optimizer) -> Callable:
    """Gets scheduler from configs"""
    
    # Get scheduler
    if cfg.scheduler.type == 'torch':
        Scheduler: torch.optim.lr_scheduler._LRScheduler = getattr(torch.optim.lr_scheduler, cfg.scheduler.type)
        scheduler = Scheduler(optimizer=optimizer, **cfg.scheduler.kwargs)
        if cfg.scheduler.get('warmup', 0):
            from warmup_scheduler import GradualWarmupScheduler
            scheduler = GradualWarmupScheduler(optimizer, multiplier=1, 
                total_epoch=cfg.scheduler.warmup, after_scheduler=scheduler)
    elif cfg.scheduler.type == 'timm':
        from timm.scheduler import create_scheduler
        scheduler, _ = create_scheduler(optimizer=optimizer, args=cfg.scheduler.kwargs)
    elif cfg.scheduler.type == 'transformers':
        from transformers import get_scheduler # default: linear scheduler without warm up and linear decay
        scheduler = get_scheduler(optimizer=optimizer, **cfg.scheduler.kwargs)
    else:
        raise NotImplementedError(f'invalid scheduler configs: {cfg.scheduler}')

    return scheduler


@torch.no_grad()
def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.reshape(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self, device='cuda'):
        """
        Warning: does not synchronize the deque!
        """
        if not using_distributed():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device=device)
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / max(self.count, 1)

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value) if len(self.deque) > 0 else ""


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        n = kwargs.pop('n', 1)
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v, n=n)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self, device='cuda'):
        for meter in self.meters.values():
            meter.synchronize_between_processes(device=device)

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{}  Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


class NormalizeInverse(torchvision.transforms.Normalize):
    """
    Undoes the normalization and returns the reconstructed images in the input domain.
    """

    def __init__(self, mean, std):
        mean = torch.as_tensor(mean)
        std = torch.as_tensor(std)
        std_inv = 1 / (std + 1e-7)
        mean_inv = -mean * std_inv
        super().__init__(mean=mean_inv, std=std_inv)

    def __call__(self, tensor):
        return super().__call__(tensor.clone())


def resume_from_checkpoint(cfg: ProjectConfig, model, optimizer=None, scheduler=None, model_ema=None):
    
    # Check if resuming training from a checkpoint
    if not cfg.checkpoint.resume:
        print('Starting training from scratch')
        return TrainState()

    # XH: find checkpiont path automatically
    if not os.path.isfile(cfg.checkpoint.resume):
        print(f"The given checkpoint path {cfg.checkpoint.resume} does not exist, trying to find one...")
        # print(os.getcwd())
        ckpt_file = os.path.join(cfg.run.code_dir_abs, f'outputs/{cfg.run.name}/single/checkpoint-latest.pth')
        if not os.path.isfile(ckpt_file):
            # just get the fist dir, for backward compatibility
            folders = sorted(glob.glob(os.path.join(cfg.run.code_dir_abs, f'outputs/{cfg.run.name}/2023-*')))
            assert len(folders) <= 1
            if len(folders) > 0:
                ckpt_file = os.path.join(folders[0], 'checkpoint-latest.pth')

        if os.path.isfile(ckpt_file):
            print(f"Found checkpoint at {ckpt_file}!")
            cfg.checkpoint.resume = ckpt_file
        else:
            print(f"No checkpoint found in outputs/{cfg.run.name}/single/!")
            return TrainState()

    # If resuming, load model state dict
    print(f'Loading checkpoint ({datetime.datetime.now()})')
    checkpoint = torch.load(cfg.checkpoint.resume, map_location='cpu')
    if 'model' in checkpoint:
        state_dict, key = checkpoint['model'], 'model'
    else:
        print("Warning: no model found in checkpoint!")
        state_dict, key = checkpoint, 'N/A'
    if any(k.startswith('module.') for k in state_dict.keys()):
        state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
        print('Removed "module." from checkpoint state dict')
    missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
    print(f'Loaded model checkpoint key {key} from {cfg.checkpoint.resume}')
    if len(missing_keys):
        print(f' - Missing_keys: {missing_keys}')
    if len(unexpected_keys):
        print(f' - Unexpected_keys: {unexpected_keys}')
    # 298 missing, 328 unexpected! total 448 modules.
    print(f"{len(missing_keys)} missing, {len(unexpected_keys)} unexpected! total {len(model.state_dict().keys())} modules.")
    # print("First 10 keys:")
    # for i in range(10):
    #     print(missing_keys[i], unexpected_keys[i])
    # exit(0)
    if 'step' in checkpoint:
        print("Number of trained steps:", checkpoint['step'])

    # TODO: implement better loading for fine tuning
    # Resume model ema
    if cfg.ema.use_ema:
        if checkpoint['model_ema']:
            model_ema.load_state_dict(checkpoint['model_ema'])
            print('Loaded model ema from checkpoint')
        else:
            model_ema.load_state_dict(model.parameters())
            print('No model ema in checkpoint; loaded current parameters into model')
    else:
        if 'model_ema' in checkpoint and checkpoint['model_ema']:
            print('Not using model ema, but model_ema found in checkpoint (you probably want to resume it!)')
        else:
            print('Not using model ema, and no model_ema found in checkpoint.')
            
    # Resume optimizer and/or training state
    train_state = TrainState()
    if 'train' in cfg.run.job:
        if cfg.checkpoint.resume_training:
            assert (
                cfg.checkpoint.resume_training_optimizer 
                or cfg.checkpoint.resume_training_scheduler 
                or cfg.checkpoint.resume_training_state
                or cfg.checkpoint.resume_training
            ), f'Invalid configs: {cfg.checkpoint}'
            if cfg.checkpoint.resume_training_optimizer:
                if 'optimizer' not in checkpoint:
                    assert 'tune' in cfg.run.name, f'please check the checkpoint for run {cfg.run.name}'
                    print("Warning: not loading optimizer!")
                else:
                    assert 'optimizer' in checkpoint, f'Value not in {checkpoint.keys()}'
                    optimizer.load_state_dict(checkpoint['optimizer'])
                    print(f'Loaded optimizer from checkpoint')
            else:
                print(f'Did not load optimizer from checkpoint')
            if cfg.checkpoint.resume_training_scheduler:
                if 'scheduler' not in checkpoint:
                    assert 'tune' in cfg.run.name, f'please check the checkpoint for run {cfg.run.name}'
                    print("Warning: not loading scheduler!")
                else:
                    assert 'scheduler' in checkpoint, f'Value not in {checkpoint.keys()}'
                    scheduler.load_state_dict(checkpoint['scheduler'])
                    print(f'Loaded scheduler from checkpoint')
            else:
                print(f'Did not load scheduler from checkpoint')
            if cfg.checkpoint.resume_training_state:
                if 'steps' in checkpoint and 'step' not in checkpoint:  # fixes an old typo
                    checkpoint['step'] = checkpoint.pop('steps')
                assert {'epoch', 'step', 'best_val'}.issubset(set(checkpoint.keys()))
                epoch, step, best_val = checkpoint['epoch'] + 1, checkpoint['step'], checkpoint['best_val']
                train_state = TrainState(epoch=epoch, step=step, best_val=best_val)
                print(f'Resumed state from checkpoint: step {step}, epoch {epoch}, best_val {best_val}')
            else:
                print(f'Did not load train state from checkpoint')
        else:
            print('Did not resume optimizer, scheduler, or epoch from checkpoint')
    
    print(f'Finished loading checkpoint ({datetime.datetime.now()})')

    return train_state


def setup_distributed_print(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    from rich import print as __richprint__
    builtin_print = __richprint__  # __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def using_distributed():
    return dist.is_available() and dist.is_initialized()


def get_rank():
    return dist.get_rank() if using_distributed() else 0


def set_seed(seed):
    rank = get_rank()
    seed = seed + rank
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    if using_distributed():
        print(f'Seeding node {rank} with seed {seed}', force=True)
    else:
        print(f'Seeding node {rank} with seed {seed}')


def compute_grad_norm(parameters):
    # total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2).item()
    total_norm = 0
    for p in parameters:
        if p.grad is not None and p.requires_grad:
            param_norm = p.grad.detach().data.norm(2)
            total_norm += param_norm.item() ** 2
    total_norm = total_norm ** 0.5
    return total_norm


class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__