|
from dataclasses import dataclass |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
|
|
from flux.modules.layers import (DoubleStreamBlock, EmbedND, LastLayer, |
|
MLPEmbedder, SingleStreamBlock, |
|
SingleStreamBlock_kv,DoubleStreamBlock_kv, |
|
timestep_embedding) |
|
|
|
|
|
@dataclass |
|
class FluxParams: |
|
in_channels: int |
|
vec_in_dim: int |
|
context_in_dim: int |
|
hidden_size: int |
|
mlp_ratio: float |
|
num_heads: int |
|
depth: int |
|
depth_single_blocks: int |
|
axes_dim: list[int] |
|
theta: int |
|
qkv_bias: bool |
|
guidance_embed: bool |
|
|
|
|
|
class Flux(nn.Module): |
|
""" |
|
Transformer model for flow matching on sequences. |
|
""" |
|
|
|
def __init__(self, params: FluxParams,double_block_cls=DoubleStreamBlock,single_block_cls=SingleStreamBlock): |
|
super().__init__() |
|
|
|
self.params = params |
|
self.in_channels = params.in_channels |
|
self.out_channels = self.in_channels |
|
if params.hidden_size % params.num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" |
|
) |
|
pe_dim = params.hidden_size // params.num_heads |
|
if sum(params.axes_dim) != pe_dim: |
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = params.hidden_size |
|
self.num_heads = params.num_heads |
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) |
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) |
|
self.guidance_in = ( |
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() |
|
) |
|
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
double_block_cls( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
qkv_bias=params.qkv_bias, |
|
) |
|
for _ in range(params.depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
single_block_cls(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) |
|
for _ in range(params.depth_single_blocks) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
guidance: Tensor | None = None, |
|
) -> Tensor: |
|
if img.ndim != 3 or txt.ndim != 3: |
|
raise ValueError("Input img and txt tensors must have 3 dimensions.") |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256)) |
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
for block in self.double_blocks: |
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) |
|
|
|
img = torch.cat((txt, img), 1) |
|
for block in self.single_blocks: |
|
img = block(img, vec=vec, pe=pe) |
|
img = img[:, txt.shape[1] :, ...] |
|
|
|
img = self.final_layer(img, vec) |
|
return img |
|
|
|
class Flux_kv(Flux): |
|
""" |
|
继承Flux类,重写forward方法 |
|
""" |
|
|
|
def __init__(self, params: FluxParams,double_block_cls=DoubleStreamBlock_kv,single_block_cls=SingleStreamBlock_kv): |
|
super().__init__(params,double_block_cls,single_block_cls) |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
guidance: Tensor | None = None, |
|
info: dict = {}, |
|
) -> Tensor: |
|
if img.ndim != 3 or txt.ndim != 3: |
|
raise ValueError("Input img and txt tensors must have 3 dimensions.") |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256)) |
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
if not info['inverse']: |
|
mask_indices = info['mask_indices'] |
|
info['pe_mask'] = torch.cat((pe[:, :, :512, ...],pe[:, :, mask_indices+512, ...]),dim=2) |
|
|
|
cnt = 0 |
|
for block in self.double_blocks: |
|
info['id'] = cnt |
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, info=info) |
|
cnt += 1 |
|
|
|
cnt = 0 |
|
x = torch.cat((txt, img), 1) |
|
for block in self.single_blocks: |
|
info['id'] = cnt |
|
x = block(x, vec=vec, pe=pe, info=info) |
|
cnt += 1 |
|
|
|
img = x[:, txt.shape[1] :, ...] |
|
|
|
img = self.final_layer(img, vec) |
|
|
|
return img |
|
|