import torch from einops import rearrange from torch import Tensor def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor,pe_q = None, attention_mask = None) -> Tensor: if pe_q is None: q, k = apply_rope(q, k, pe) # torch.Size([1, 24, 4592, 128]) torch.Size([1, 24, 4592, 128]) pe torch.Size([1, 1, 4592, 64, 2, 2]) x = torch.nn.functional.scaled_dot_product_attention(q, k, v,attn_mask=attention_mask) # torch.Size([1, 24, 4592, 128]) x = rearrange(x, "B H L D -> B L (H D)") # torch.Size([1, 4592, 3072]) return x else: q, k = apply_rope_qk(q, k, pe_q, pe) # torch.Size([1, 24, 4592, 128]) torch.Size([1, 24, 4592, 128]) pe torch.Size([1, 1, 4592, 64, 2, 2]) x = torch.nn.functional.scaled_dot_product_attention(q, k, v,attn_mask=attention_mask) x = rearrange(x, "B H L D -> B L (H D)") return x def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim # dim =16 + 56 + 56 omega = 1.0 / (theta**scale) # 64 omega out = torch.einsum("...n,d->...nd", pos, omega) out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) # torch.Size([1, 1, 4592, x, 2, 2]) x = 8 + 28 + 28 return out.float() def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) # torch.Size([1, 24, 4592, 128]) -> torch.Size([1, 24, 4592, 64, 1, 2]) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) # torch.Size([1, 24, 4592, 128]) -> torch.Size([1, 24, 4592, 64, 1, 2]) xq_out = freqs_cis[:, :, :xq_.shape[2], :, :, 0] * xq_[..., 0] + freqs_cis[:, :, :xq_.shape[2], :, :, 1] * xq_[..., 1] xk_out = freqs_cis[:, :, :xk_.shape[2], :, :, 0] * xk_[..., 0] + freqs_cis[:, :, :xk_.shape[2], :, :, 1] * xk_[..., 1] return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) def apply_rope_qk(xq: Tensor, xk: Tensor, freqs_cis_q: Tensor,freqs_cis_k: Tensor) -> tuple[Tensor, Tensor]: xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) # torch.Size([1, 24, 4592, 128]) -> torch.Size([1, 24, 4592, 64, 1, 2]) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) # torch.Size([1, 24, 4592, 128]) -> torch.Size([1, 24, 4592, 64, 1, 2]) xq_out = freqs_cis_q[:, :, :xq_.shape[2], :, :, 0] * xq_[..., 0] + freqs_cis_q[:, :, :xq_.shape[2], :, :, 1] * xq_[..., 1] xk_out = freqs_cis_k[:, :, :xk_.shape[2], :, :, 0] * xk_[..., 0] + freqs_cis_k[:, :, :xk_.shape[2], :, :, 1] * xk_[..., 1] return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)