Spaces:
Build error
Build error
from nltk.classify import NaiveBayesClassifier | |
from nltk.corpus import subjectivity | |
from nltk.sentiment import SentimentAnalyzer | |
from nltk.sentiment.util import * | |
from nltk.sentiment.vader import SentimentIntensityAnalyzer | |
class SharpClassifier(object): | |
def __init__(self, sentence): | |
self.sentence = sentence | |
print("Classification....") | |
def classify(self): | |
sentence = self.sentence | |
n_instances = 100 | |
subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]] | |
obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]] | |
len(subj_docs), len(obj_docs) | |
train_subj_docs = subj_docs[:80] | |
test_subj_docs = subj_docs[80:100] | |
train_obj_docs = obj_docs[:80] | |
test_obj_docs = obj_docs[80:100] | |
training_docs = train_subj_docs + train_obj_docs | |
testing_docs = test_subj_docs + test_obj_docs | |
sentim_analyzer = SentimentAnalyzer() | |
all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs]) | |
unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4) | |
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats) | |
training_set = sentim_analyzer.apply_features(training_docs) | |
test_set = sentim_analyzer.apply_features(testing_docs) | |
trainer = NaiveBayesClassifier.train | |
classifier = sentim_analyzer.train(trainer, training_set) | |
# for key,value in sorted(sentim_analyzer.evaluate(test_set).items()): | |
# print('{0}: {1}'.format(key, value)) | |
sid = SentimentIntensityAnalyzer() | |
ss = sid.polarity_scores(sentence) | |
polarity = '' | |
if ss['neg'] < ss['pos']: | |
polarity = 'partialSolution' | |
elif ss['neg'] > ss['pos']: | |
polarity = 'problem' | |
else: | |
polarity ='neutre' | |
# for k in sorted(ss): | |
# print('{0}: {1}, '.format(k, ss[k]), end='') | |
return polarity | |