Spaces:
Build error
Build error
model
Browse files
LSTM/__pycache__/config.cpython-38.pyc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1a316609dde1c8a3aeca1dfe09c8f54ff2bc3193afae97d0ced837735a41063
|
3 |
+
size 480
|
LSTM/__pycache__/inputHandler.cpython-38.pyc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e822d00085a8a0c7f4c9227b1f26fff37af85a5ba9a97005d77ee5628ae0ba4e
|
3 |
+
size 6423
|
LSTM/choosed_checkpoit/lstm_50_50_0.17_0.25.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ca771b21fa23112b534ee0d1f8bacd97cf2205301e7a66bed5c34546201d5c8
|
3 |
+
size 40510656
|
LSTM/config.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EMBEDDING_DIM = 50
|
3 |
+
|
4 |
+
|
5 |
+
MAX_SEQUENCE_LENGTH = 50
|
6 |
+
VALIDATION_SPLIT = 0.1
|
7 |
+
|
8 |
+
|
9 |
+
RATE_DROP_LSTM = 0.17
|
10 |
+
RATE_DROP_DENSE = 0.25
|
11 |
+
NUMBER_LSTM = 50
|
12 |
+
NUMBER_DENSE_UNITS = 50
|
13 |
+
ACTIVATION_FUNCTION = 'relu'
|
14 |
+
|
15 |
+
|
16 |
+
siamese_config = {
|
17 |
+
'EMBEDDING_DIM': EMBEDDING_DIM,
|
18 |
+
'MAX_SEQUENCE_LENGTH' : MAX_SEQUENCE_LENGTH,
|
19 |
+
'VALIDATION_SPLIT': VALIDATION_SPLIT,
|
20 |
+
'RATE_DROP_LSTM': RATE_DROP_LSTM,
|
21 |
+
'RATE_DROP_DENSE': RATE_DROP_DENSE,
|
22 |
+
'NUMBER_LSTM': NUMBER_LSTM,
|
23 |
+
'NUMBER_DENSE_UNITS': NUMBER_DENSE_UNITS,
|
24 |
+
'ACTIVATION_FUNCTION': ACTIVATION_FUNCTION
|
25 |
+
}
|
LSTM/inputHandler.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from keras.preprocessing.sequence import pad_sequences
|
2 |
+
from keras.preprocessing.text import Tokenizer
|
3 |
+
from gensim.models import Word2Vec
|
4 |
+
import numpy as np
|
5 |
+
import gc
|
6 |
+
|
7 |
+
|
8 |
+
def train_word2vec(documents, embedding_dim):
|
9 |
+
"""
|
10 |
+
train word2vector over training documents
|
11 |
+
Args:
|
12 |
+
documents (list): list of document
|
13 |
+
embedding_dim (int): output wordvector size
|
14 |
+
Returns:
|
15 |
+
word_vectors(dict): dict containing words and their respective vectors
|
16 |
+
"""
|
17 |
+
model = Word2Vec(documents, min_count=1, size=embedding_dim)
|
18 |
+
word_vectors = model.wv
|
19 |
+
del model
|
20 |
+
return word_vectors
|
21 |
+
|
22 |
+
|
23 |
+
def create_embedding_matrix(tokenizer, word_vectors, embedding_dim):
|
24 |
+
"""
|
25 |
+
Create embedding matrix containing word indexes and respective vectors from word vectors
|
26 |
+
Args:
|
27 |
+
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object containing word indexes
|
28 |
+
word_vectors (dict): dict containing word and their respective vectors
|
29 |
+
embedding_dim (int): dimension of word vector
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
|
33 |
+
"""
|
34 |
+
nb_words = len(tokenizer.word_index) + 1
|
35 |
+
word_index = tokenizer.word_index
|
36 |
+
embedding_matrix = np.zeros((nb_words, embedding_dim))
|
37 |
+
print("Embedding matrix shape: %s" % str(embedding_matrix.shape))
|
38 |
+
for word, i in word_index.items():
|
39 |
+
try:
|
40 |
+
embedding_vector = word_vectors[word]
|
41 |
+
if embedding_vector is not None:
|
42 |
+
embedding_matrix[i] = embedding_vector
|
43 |
+
except KeyError:
|
44 |
+
print("vector not found for word - %s" % word)
|
45 |
+
print('Null word embeddings: %d' % np.sum(np.sum(embedding_matrix, axis=1) == 0))
|
46 |
+
return embedding_matrix
|
47 |
+
|
48 |
+
|
49 |
+
def word_embed_meta_data(documents, embedding_dim):
|
50 |
+
"""
|
51 |
+
Load tokenizer object for given vocabs list
|
52 |
+
Args:
|
53 |
+
documents (list): list of document
|
54 |
+
embedding_dim (int): embedding dimension
|
55 |
+
Returns:
|
56 |
+
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object
|
57 |
+
embedding_matrix (dict): dict with word_index and vector mapping
|
58 |
+
"""
|
59 |
+
documents = [str(x).lower().split() for x in documents]
|
60 |
+
tokenizer = Tokenizer()
|
61 |
+
tokenizer.fit_on_texts(documents)
|
62 |
+
word_vector = train_word2vec(documents, embedding_dim)
|
63 |
+
embedding_matrix = create_embedding_matrix(tokenizer, word_vector, embedding_dim)
|
64 |
+
del word_vector
|
65 |
+
gc.collect()
|
66 |
+
return tokenizer, embedding_matrix
|
67 |
+
|
68 |
+
|
69 |
+
def create_train_dev_set(tokenizer, sentences_pair, is_similar, max_sequence_length, validation_split_ratio):
|
70 |
+
"""
|
71 |
+
Create training and validation dataset
|
72 |
+
Args:
|
73 |
+
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object
|
74 |
+
sentences_pair (list): list of tuple of sentences pairs
|
75 |
+
is_similar (list): list containing labels if respective sentences in sentence1 and sentence2
|
76 |
+
are same or not (1 if same else 0)
|
77 |
+
max_sequence_length (int): max sequence length of sentences to apply padding
|
78 |
+
validation_split_ratio (float): contain ratio to split training data into validation data
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
train_data_1 (list): list of input features for training set from sentences1
|
82 |
+
train_data_2 (list): list of input features for training set from sentences2
|
83 |
+
labels_train (np.array): array containing similarity score for training data
|
84 |
+
leaks_train(np.array): array of training leaks features
|
85 |
+
|
86 |
+
val_data_1 (list): list of input features for validation set from sentences1
|
87 |
+
val_data_2 (list): list of input features for validation set from sentences1
|
88 |
+
labels_val (np.array): array containing similarity score for validation data
|
89 |
+
leaks_val (np.array): array of validation leaks features
|
90 |
+
"""
|
91 |
+
sentences1 = [x[0].lower() for x in sentences_pair]
|
92 |
+
sentences2 = [x[1].lower() for x in sentences_pair]
|
93 |
+
train_sequences_1 = tokenizer.texts_to_sequences(sentences1)
|
94 |
+
train_sequences_2 = tokenizer.texts_to_sequences(sentences2)
|
95 |
+
leaks = [[len(set(x1)), len(set(x2)), len(set(x1).intersection(x2))]
|
96 |
+
for x1, x2 in zip(train_sequences_1, train_sequences_2)]
|
97 |
+
|
98 |
+
train_padded_data_1 = pad_sequences(train_sequences_1, maxlen=max_sequence_length)
|
99 |
+
train_padded_data_2 = pad_sequences(train_sequences_2, maxlen=max_sequence_length)
|
100 |
+
train_labels = np.array(is_similar)
|
101 |
+
leaks = np.array(leaks)
|
102 |
+
|
103 |
+
shuffle_indices = np.random.permutation(np.arange(len(train_labels)))
|
104 |
+
train_data_1_shuffled = train_padded_data_1[shuffle_indices]
|
105 |
+
train_data_2_shuffled = train_padded_data_2[shuffle_indices]
|
106 |
+
train_labels_shuffled = train_labels[shuffle_indices]
|
107 |
+
leaks_shuffled = leaks[shuffle_indices]
|
108 |
+
|
109 |
+
dev_idx = max(1, int(len(train_labels_shuffled) * validation_split_ratio))
|
110 |
+
|
111 |
+
del train_padded_data_1
|
112 |
+
del train_padded_data_2
|
113 |
+
gc.collect()
|
114 |
+
|
115 |
+
train_data_1, val_data_1 = train_data_1_shuffled[:-dev_idx], train_data_1_shuffled[-dev_idx:]
|
116 |
+
train_data_2, val_data_2 = train_data_2_shuffled[:-dev_idx], train_data_2_shuffled[-dev_idx:]
|
117 |
+
labels_train, labels_val = train_labels_shuffled[:-dev_idx], train_labels_shuffled[-dev_idx:]
|
118 |
+
leaks_train, leaks_val = leaks_shuffled[:-dev_idx], leaks_shuffled[-dev_idx:]
|
119 |
+
|
120 |
+
return train_data_1, train_data_2, labels_train, leaks_train, val_data_1, val_data_2, labels_val, leaks_val
|
121 |
+
|
122 |
+
|
123 |
+
def create_test_data(tokenizer, test_sentences_pair, max_sequence_length):
|
124 |
+
"""
|
125 |
+
Create training and validation dataset
|
126 |
+
Args:
|
127 |
+
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object
|
128 |
+
test_sentences_pair (list): list of tuple of sentences pairs
|
129 |
+
max_sequence_length (int): max sequence length of sentences to apply padding
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
test_data_1 (list): list of input features for training set from sentences1
|
133 |
+
test_data_2 (list): list of input features for training set from sentences2
|
134 |
+
"""
|
135 |
+
test_sentences1 = [str(x[0]).lower() for x in test_sentences_pair]
|
136 |
+
test_sentences2 = [x[1].lower() for x in test_sentences_pair]
|
137 |
+
|
138 |
+
test_sequences_1 = tokenizer.texts_to_sequences(test_sentences1)
|
139 |
+
test_sequences_2 = tokenizer.texts_to_sequences(test_sentences2)
|
140 |
+
leaks_test = [[len(set(x1)), len(set(x2)), len(set(x1).intersection(x2))]
|
141 |
+
for x1, x2 in zip(test_sequences_1, test_sequences_2)]
|
142 |
+
|
143 |
+
leaks_test = np.array(leaks_test)
|
144 |
+
test_data_1 = pad_sequences(test_sequences_1, maxlen=max_sequence_length)
|
145 |
+
test_data_2 = pad_sequences(test_sequences_2, maxlen=max_sequence_length)
|
146 |
+
|
147 |
+
return test_data_1, test_data_2, leaks_test
|
LSTM/sample_data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eff555eaf20951ddb3f611ef509a5e19d31f6842983df6faab4754a17a6eb854
|
3 |
+
size 62661
|