import gradio as gr # Load the new model from Shakker-Labs demo = gr.load("models/Shakker-Labs/AWPortrait-FL") def process_output(*outputs): # Assuming the model returns a tuple, and the first element is the image if isinstance(outputs, tuple): # Extract the image from the tuple image = outputs[0] return image return outputs # Create a wrapper to process the output correctly def wrapped_inference(*inputs): outputs = demo(*inputs) return process_output(*outputs) # Launch the Gradio interface with the corrected output processing gr.Interface( wrapped_inference, demo.inputs, demo.outputs, ).launch()