File size: 43,352 Bytes
824b515 2ad9d00 5098655 824b515 2ad9d00 824b515 5098655 2ad9d00 5098655 2ad9d00 824b515 2ad9d00 824b515 2ad9d00 824b515 2ad9d00 824b515 2ad9d00 824b515 2ad9d00 824b515 5098655 824b515 fe91ef5 824b515 2ad9d00 5098655 824b515 5098655 824b515 5098655 824b515 2ad9d00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
import argparse, os, sys, glob, yaml, math, random
sys.path.append('../') # setting path to get Core and assets
import datetime, time
import numpy as np
from omegaconf import OmegaConf
from collections import OrderedDict
from tqdm import trange, tqdm
from einops import repeat
from einops import rearrange, repeat
from functools import partial
import torch
from pytorch_lightning import seed_everything
from funcs import load_model_checkpoint, load_prompts, load_image_batch, get_filelist, save_videos, get_videos
from funcs import batch_ddim_sampling
from utils.utils import instantiate_from_config
import peft
import torchvision
from transformers.utils import ContextManagers
from transformers import AutoProcessor, AutoModel, AutoImageProcessor, AutoModelForObjectDetection, AutoModelForZeroShotObjectDetection
from Core.aesthetic_scorer import AestheticScorerDiff
from Core.actpred_scorer import ActPredScorer
from Core.weather_scorer import WeatherScorer
from Core.compression_scorer import JpegCompressionScorer, jpeg_compressibility
import Core.prompts as prompts_file
from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
import hpsv2
import bitsandbytes as bnb
from accelerate import Accelerator
from accelerate.utils import gather_object
import torch.distributed as dist
import logging
import gc
from PIL import Image
import io
import albumentations as A
from huggingface_hub import snapshot_download
import cv2
# import ipdb
# st = ipdb.set_trace
def create_output_folders(output_dir, run_name):
out_dir = os.path.join(output_dir, run_name)
os.makedirs(out_dir, exist_ok=True)
os.makedirs(f"{out_dir}/samples", exist_ok=True)
return out_dir
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything")
parser.add_argument("--mode", default="base", type=str, help="which kind of inference mode: {'base', 'i2v'}")
parser.add_argument("--ckpt_path", type=str, default='VADER-VideoCrafter/checkpoints/base_512_v2/model.ckpt', help="checkpoint path")
parser.add_argument("--config", type=str, default='VADER-VideoCrafter/configs/inference_t2v_512_v2.0.yaml', help="config (yaml) path")
parser.add_argument("--savefps", type=str, default=10, help="video fps to generate")
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
parser.add_argument("--frames", type=int, default=-1, help="frames num to inference")
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance")
## for conditional i2v only
parser.add_argument("--cond_input", type=str, default=None, help="data dir of conditional input")
## for training
parser.add_argument("--lr", type=float, default=2e-4, help="learning rate")
parser.add_argument("--val_batch_size", type=int, default=1, help="batch size for validation")
parser.add_argument("--num_val_runs", type=int, default=1, help="total number of validation samples = num_val_runs * num_gpus * num_val_batch")
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training")
parser.add_argument("--reward_fn", type=str, default="aesthetic", help="reward function: 'aesthetic', 'hps', 'aesthetic_hps', 'pick_score', 'rainy', 'snowy', 'objectDetection', 'actpred', 'compression'")
parser.add_argument("--compression_model_path", type=str, default='assets/compression_reward.pt', help="compression model path") # The compression model is used only when reward_fn is 'compression'
# The "book." is for grounding-dino model . Remember to add "." at the end of the object name for grounding-dino model.
# But for yolos model, do not add "." at the end of the object name. Instead, you should set the object name to "book" for example.
parser.add_argument("--target_object", type=str, default="book", help="target object for object detection reward function")
parser.add_argument("--detector_model", type=str, default="yolos-base", help="object detection model",
choices=["yolos-base", "yolos-tiny", "grounding-dino-base", "grounding-dino-tiny"])
parser.add_argument("--hps_version", type=str, default="v2.1", help="hps version: 'v2.0', 'v2.1'")
parser.add_argument("--prompt_fn", type=str, default="hps_custom", help="prompt function")
parser.add_argument("--nouns_file", type=str, default="simple_animals.txt", help="nouns file")
parser.add_argument("--activities_file", type=str, default="activities.txt", help="activities file")
parser.add_argument("--num_train_epochs", type=int, default=200, help="number of training epochs")
parser.add_argument("--max_train_steps", type=int, default=10000, help="max training steps")
parser.add_argument("--backprop_mode", type=str, default="last", help="backpropagation mode: 'last', 'rand', 'specific'") # backprop_mode != None also means training mode for batch_ddim_sampling
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="gradient accumulation steps")
parser.add_argument("--mixed_precision", type=str, default='fp16', help="mixed precision training: 'no', 'fp8', 'fp16', 'bf16'")
parser.add_argument("--project_dir", type=str, default="VADER-VideoCrafter/project_dir", help="project directory")
parser.add_argument("--validation_steps", type=int, default=1, help="The frequency of validation, e.g., 1 means validate every 1*accelerator.num_processes steps")
parser.add_argument("--checkpointing_steps", type=int, default=1, help="The frequency of checkpointing")
parser.add_argument("--wandb_entity", type=str, default="", help="wandb entity")
parser.add_argument("--debug", type=str2bool, default=False, help="debug mode")
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="max gradient norm")
parser.add_argument("--use_AdamW8bit", type=str2bool, default=False, help="use AdamW8bit optimizer")
parser.add_argument("--is_sample_preview", type=str2bool, default=True, help="sample preview during training")
parser.add_argument("--decode_frame", type=str, default="-1", help="decode frame: '-1', 'fml', 'all', 'alt'") # it could also be any number str like '3', '10'. alt: alternate frames, fml: first, middle, last frames, all: all frames. '-1': random frame
parser.add_argument("--inference_only", type=str2bool, default=True, help="only do inference")
parser.add_argument("--lora_ckpt_path", type=str, default=None, help="LoRA checkpoint path")
parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank")
return parser
def aesthetic_loss_fn(aesthetic_target=None,
grad_scale=0,
device=None,
torch_dtype=None):
'''
Args:
aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment
grad_scale: float, the scale of the gradient. it is 0.1 in this experiment
device: torch.device, the device to run the model.
torch_dtype: torch.dtype, the data type of the model.
Returns:
loss_fn: function, the loss function of the aesthetic reward function.
'''
target_size = (224, 224)
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
scorer = AestheticScorerDiff(dtype=torch_dtype).to(device, dtype=torch_dtype)
scorer.requires_grad_(False)
def loss_fn(im_pix_un):
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
im_pix = torchvision.transforms.Resize(target_size)(im_pix)
im_pix = normalize(im_pix).to(im_pix_un.dtype)
rewards = scorer(im_pix)
if aesthetic_target is None: # default maximization
loss = -1 * rewards
else:
# using L1 to keep on same scale
loss = abs(rewards - aesthetic_target)
return loss.mean() * grad_scale, rewards.mean()
return loss_fn
def hps_loss_fn(inference_dtype=None, device=None, hps_version="v2.0"):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment.
Returns:
loss_fn: function, the loss function of the HPS reward function.
'''
model_name = "ViT-H-14"
model, preprocess_train, preprocess_val = create_model_and_transforms(
model_name,
'laion2B-s32B-b79K',
precision=inference_dtype,
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
tokenizer = get_tokenizer(model_name)
if hps_version == "v2.0": # if there is a error, please download the model manually and set the path
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt"
else: # hps_version == "v2.1"
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt"
# force download of model via score
hpsv2.score([], "", hps_version=hps_version)
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer(model_name)
model = model.to(device, dtype=inference_dtype)
model.eval()
target_size = (224, 224)
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
def loss_fn(im_pix, prompts):
im_pix = ((im_pix / 2) + 0.5).clamp(0, 1)
x_var = torchvision.transforms.Resize(target_size)(im_pix)
x_var = normalize(x_var).to(im_pix.dtype)
caption = tokenizer(prompts)
caption = caption.to(device)
outputs = model(x_var, caption)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits = image_features @ text_features.T
scores = torch.diagonal(logits)
loss = 1.0 - scores
return loss.mean(), scores.mean()
return loss_fn
def aesthetic_hps_loss_fn(aesthetic_target=None,
grad_scale=0,
inference_dtype=None,
device=None,
hps_version="v2.0"):
'''
Args:
aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment
grad_scale: float, the scale of the gradient. it is 0.1 in this experiment
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment.
Returns:
loss_fn: function, the loss function of a combination of aesthetic and HPS reward function.
'''
# HPS
model_name = "ViT-H-14"
model, preprocess_train, preprocess_val = create_model_and_transforms(
model_name,
'laion2B-s32B-b79K',
precision=inference_dtype,
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
# tokenizer = get_tokenizer(model_name)
if hps_version == "v2.0": # if there is a error, please download the model manually and set the path
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt"
else: # hps_version == "v2.1"
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt"
# force download of model via score
hpsv2.score([], "", hps_version=hps_version)
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer(model_name)
model = model.to(device, dtype=inference_dtype)
model.eval()
target_size = (224, 224)
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
# Aesthetic
scorer = AestheticScorerDiff(dtype=inference_dtype).to(device, dtype=inference_dtype)
scorer.requires_grad_(False)
def loss_fn(im_pix_un, prompts):
# Aesthetic
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
im_pix = torchvision.transforms.Resize(target_size)(im_pix)
im_pix = normalize(im_pix).to(im_pix_un.dtype)
aesthetic_rewards = scorer(im_pix)
if aesthetic_target is None: # default maximization
aesthetic_loss = -1 * aesthetic_rewards
else:
# using L1 to keep on same scale
aesthetic_loss = abs(aesthetic_rewards - aesthetic_target)
aesthetic_loss = aesthetic_loss.mean() * grad_scale
aesthetic_rewards = aesthetic_rewards.mean()
# HPS
caption = tokenizer(prompts)
caption = caption.to(device)
outputs = model(im_pix, caption)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits = image_features @ text_features.T
scores = torch.diagonal(logits)
hps_loss = abs(1.0 - scores)
hps_loss = hps_loss.mean()
hps_rewards = scores.mean()
loss = (1.5 * aesthetic_loss + hps_loss) /2 # 1.5 is a hyperparameter. Set it to 1.5 because experimentally hps_loss is 1.5 times larger than aesthetic_loss
rewards = (aesthetic_rewards + 15 * hps_rewards) / 2 # 15 is a hyperparameter. Set it to 15 because experimentally aesthetic_rewards is 15 times larger than hps_reward
return loss, rewards
return loss_fn
def pick_score_loss_fn(inference_dtype=None, device=None):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
Returns:
loss_fn: function, the loss function of the PickScore reward function.
'''
processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1"
processor = AutoProcessor.from_pretrained(processor_name_or_path, torch_dtype=inference_dtype)
model = AutoModel.from_pretrained(model_pretrained_name_or_path, torch_dtype=inference_dtype).eval().to(device)
model.requires_grad_(False)
def loss_fn(im_pix_un, prompts): # im_pix_un: b,c,h,w
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
# reproduce the pick_score preprocessing
im_pix = im_pix * 255 # b,c,h,w
if im_pix.shape[2] < im_pix.shape[3]:
height = 224
width = im_pix.shape[3] * height // im_pix.shape[2] # keep the aspect ratio, so the width is w * 224/h
else:
width = 224
height = im_pix.shape[2] * width // im_pix.shape[3] # keep the aspect ratio, so the height is h * 224/w
# interpolation and antialiasing should be the same as below
im_pix = torchvision.transforms.Resize((height, width),
interpolation=torchvision.transforms.InterpolationMode.BICUBIC,
antialias=True)(im_pix)
im_pix = im_pix.permute(0, 2, 3, 1) # b,c,h,w -> (b,h,w,c)
# crop the center 224x224
startx = width//2 - (224//2)
starty = height//2 - (224//2)
im_pix = im_pix[:, starty:starty+224, startx:startx+224, :]
# do rescale and normalize as CLIP
im_pix = im_pix * 0.00392156862745098 # rescale factor
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device)
im_pix = (im_pix - mean) / std
im_pix = im_pix.permute(0, 3, 1, 2) # BHWC -> BCHW
text_inputs = processor(
text=prompts,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
# embed
image_embs = model.get_image_features(pixel_values=im_pix)
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
text_embs = model.get_text_features(**text_inputs)
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
# score
scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0]
loss = abs(1.0 - scores / 100.0)
return loss.mean(), scores.mean()
return loss_fn
def weather_loss_fn(inference_dtype=None, device=None, weather="rainy", target=None, grad_scale=0):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
weather: str, the weather condition. It is "rainy" or "snowy" in this experiment.
target: float, the target value of the weather score. It is 1.0 in this experiment.
grad_scale: float, the scale of the gradient. It is 1 in this experiment.
Returns:
loss_fn: function, the loss function of the weather reward function.
'''
if weather == "rainy":
reward_model_path = "../assets/rainy_reward.pt"
elif weather == "snowy":
reward_model_path = "../assets/snowy_reward.pt"
else:
raise NotImplementedError
scorer = WeatherScorer(dtype=inference_dtype, model_path=reward_model_path).to(device, dtype=inference_dtype)
scorer.requires_grad_(False)
scorer.eval()
def loss_fn(im_pix_un):
im_pix = ((im_pix_un + 1) / 2).clamp(0, 1) # from [-1, 1] to [0, 1]
rewards = scorer(im_pix)
if target is None:
loss = rewards
else:
loss = abs(rewards - target)
return loss.mean() * grad_scale, rewards.mean()
return loss_fn
def objectDetection_loss_fn(inference_dtype=None, device=None, targetObject='dog.', model_name='grounding-dino-base'):
'''
This reward function is used to remove the target object from the generated video.
We use yolo-s-tiny model to detect the target object in the generated video.
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
targetObject: str, the object to detect. It is "dog" in this experiment.
Returns:
loss_fn: function, the loss function of the object detection reward function.
'''
if model_name == "yolos-base":
image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype)
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for yolos model
if "." in targetObject:
raise ValueError("The targetObject name should not contain '.' for yolos-base model.")
elif model_name == "yolos-tiny":
image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype)
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for yolos model
if "." in targetObject:
raise ValueError("The targetObject name should not contain '.' for yolos-tiny model.")
elif model_name == "grounding-dino-base":
image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base", torch_dtype=inference_dtype)
model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base",torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for grounding-dino model
if "." not in targetObject:
raise ValueError("The targetObject name should contain '.' for grounding-dino-base model.")
elif model_name == "grounding-dino-tiny":
image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype)
model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for grounding-dino model
if "." not in targetObject:
raise ValueError("The targetObject name should contain '.' for grounding-dino-tiny model.")
else:
raise NotImplementedError
model.requires_grad_(False)
model.eval()
def loss_fn(im_pix_un): # im_pix_un: b,c,h,w
images = ((im_pix_un / 2) + 0.5).clamp(0.0, 1.0)
# reproduce the yolo preprocessing
height = 512
width = 512 * images.shape[3] // images.shape[2] # keep the aspect ratio, so the width is 512 * w/h
images = torchvision.transforms.Resize((height, width), antialias=False)(images)
images = images.permute(0, 2, 3, 1) # b,c,h,w -> (b,h,w,c)
image_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
image_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
images = (images - image_mean) / image_std
normalized_image = images.permute(0,3,1,2) # NHWC -> NCHW
# Process images
if model_name == "yolos-base" or model_name == "yolos-tiny":
outputs = model(pixel_values=normalized_image)
else: # grounding-dino model
inputs = image_processor(text=targetObject, return_tensors="pt").to(device)
outputs = model(pixel_values=normalized_image, input_ids=inputs.input_ids)
# Get target sizes for each image
target_sizes = torch.tensor([normalized_image[0].shape[1:]]*normalized_image.shape[0]).to(device)
# Post-process results for each image
if model_name == "yolos-base" or model_name == "yolos-tiny":
results = image_processor.post_process_object_detection(outputs, threshold=0.2, target_sizes=target_sizes)
else: # grounding-dino model
results = image_processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.4,
text_threshold=0.3,
target_sizes=target_sizes
)
sum_avg_scores = 0
for i, result in enumerate(results):
if model_name == "yolos-base" or model_name == "yolos-tiny":
id = model.config.label2id[targetObject]
# get index of targetObject's label
index = torch.where(result["labels"] == id)
if len(index[0]) == 0: # index: ([],[]) so index[0] is the first list
sum_avg_scores = torch.sum(outputs.logits - outputs.logits) # set sum_avg_scores to 0
continue
scores = result["scores"][index]
else: # grounding-dino model
if result["scores"].shape[0] == 0:
sum_avg_scores = torch.sum(outputs.last_hidden_state - outputs.last_hidden_state) # set sum_avg_scores to 0
continue
scores = result["scores"]
sum_avg_scores = sum_avg_scores + (torch.sum(scores) / scores.shape[0])
loss = sum_avg_scores / len(results)
reward = 1 - loss
return loss, reward
return loss_fn
def compression_loss_fn(inference_dtype=None, device=None, target=None, grad_scale=0, model_path=None):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
model_path: str, the path of the compression model.
Returns:
loss_fn: function, the loss function of the compression reward function.
'''
scorer = JpegCompressionScorer(dtype=inference_dtype, model_path=model_path).to(device, dtype=inference_dtype)
scorer.requires_grad_(False)
scorer.eval()
def loss_fn(im_pix_un):
im_pix = ((im_pix_un + 1) / 2).clamp(0, 1)
rewards = scorer(im_pix)
if target is None:
loss = rewards
else:
loss = abs(rewards - target)
return loss.mean() * grad_scale, rewards.mean()
return loss_fn
def actpred_loss_fn(inference_dtype=None, device=None, num_frames = 14, target_size=224):
scorer = ActPredScorer(device=device, num_frames = num_frames, dtype=inference_dtype)
scorer.requires_grad_(False)
def preprocess_img(img):
img = ((img/2) + 0.5).clamp(0,1)
img = torchvision.transforms.Resize((target_size, target_size), antialias = True)(img)
img = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
return img
def loss_fn(vid, target_action_label):
vid = torch.cat([preprocess_img(img).unsqueeze(0) for img in vid])[None]
return scorer.get_loss_and_score(vid, target_action_label)
return loss_fn
def should_sample(global_step, validation_steps, is_sample_preview):
return (global_step % validation_steps == 0 or global_step ==1) \
and is_sample_preview
# def run_training(args, model, **kwargs):
# ## ---------------------step 1: setup---------------------------
# output_dir = args.project_dir
# # step 2.1: add LoRA using peft
# config = peft.LoraConfig(
# r=args.lora_rank,
# target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
# lora_dropout=0.01,
# )
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = model.to(device)
# peft_model = peft.get_peft_model(model, config)
# # load the pretrained LoRA model
# if args.lora_ckpt_path != "Base Model":
# if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
# snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
# args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
# elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
# snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
# args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
# # load the pretrained LoRA model
# peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
# # peft_model.first_stage_model.to(device)
# peft_model.eval()
# print("device is: ", device)
# print("precision: ", peft_model.dtype)
# # precision of first_stage_model
# print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
# print("peft_model device: ", peft_model.device)
# # Inference Step: only do inference and save the videos. Skip this step if it is training
# # ==================================================================
# # sample shape
# assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
# # latent noise shape
# h, w = args.height // 8, args.width // 8
# frames = peft_model.temporal_length if args.frames < 0 else args.frames
# channels = peft_model.channels
# ## Inference step 2: run Inference over samples
# print("***** Running inference *****")
# ## Inference Step 3: generate new validation videos
# with torch.no_grad():
# # set random seed for each process
# random.seed(args.seed)
# torch.manual_seed(args.seed)
# prompts_all = [args.prompt_str]
# val_prompt = list(prompts_all)
# assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!"
# # store output of generations in dict
# results=dict(filenames=[],dir_name=[], prompt=[])
# # Inference Step 3.1: forward pass
# batch_size = len(val_prompt)
# noise_shape = [batch_size, channels, frames, h, w]
# fps = torch.tensor([args.fps]*batch_size).to(device).long()
# prompts = val_prompt
# if isinstance(prompts, str):
# prompts = [prompts]
# # mix precision
# if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
# text_emb = peft_model.module.get_learned_conditioning(prompts).to(device)
# else:
# text_emb = peft_model.get_learned_conditioning(prompts).to(device)
# if args.mode == 'base':
# cond = {"c_crossattn": [text_emb], "fps": fps}
# else: # TODO: implement i2v mode training in the future
# raise NotImplementedError
# # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
# # no backprop_mode=args.backprop_mode because it is inference process
# batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
# args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
# print("batch_samples dtype: ", batch_samples.dtype)
# print("batch_samples device: ", batch_samples.device)
# # batch_samples: b,samples,c,t,h,w
# dir_name = os.path.join(output_dir, "samples")
# # filenames should be related to the gpu index
# # get timestamps for filenames to avoid overwriting
# # current_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
# filenames = [f"temporal"] # only one sample
# # if dir_name is not exists, create it
# os.makedirs(dir_name, exist_ok=True)
# save_videos(batch_samples, dir_name, filenames, fps=args.savefps)
# results["filenames"].extend(filenames)
# results["dir_name"].extend([dir_name]*len(filenames))
# results["prompt"].extend(prompts)
# results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
# # Inference Step 3.3: collect inference results and save the videos to wandb
# # collect inference results from all the GPUs
# results_gathered=gather_object(results)
# filenames = []
# dir_name = []
# prompts = []
# for i in range(len(results_gathered)):
# filenames.extend(results_gathered[i]["filenames"])
# dir_name.extend(results_gathered[i]["dir_name"])
# prompts.extend(results_gathered[i]["prompt"])
# print("Validation sample saved!")
# # # batch size is 1, so only one video is generated
# # video = get_videos(batch_samples)
# # # read the video from the saved path
# video_path = os.path.join(dir_name[0], filenames[0]+".mp4")
# # release memory
# del batch_samples
# torch.cuda.empty_cache()
# gc.collect()
# return video_path
# # end of inference only, training script continues
# # ==================================================================
def run_training(args, model, **kwargs):
## ---------------------step 1: accelerator setup---------------------------
accelerator = Accelerator( # Initialize Accelerator
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
project_dir=args.project_dir,
device_placement=True,
cpu=False
)
output_dir = args.project_dir
# step 2.1: add LoRA using peft
config = peft.LoraConfig(
r=args.lora_rank,
target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
lora_dropout=0.01,
)
model = model.to(accelerator.device)
peft_model = peft.get_peft_model(model, config)
peft_model.print_trainable_parameters()
# load the pretrained LoRA model
if args.lora_ckpt_path != "Base Model":
if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
# load the pretrained LoRA model
peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
print("precision: ", peft_model.dtype)
# precision of first_stage_model
print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
print("peft_model device: ", peft_model.device)
# Inference Step: only do inference and save the videos. Skip this step if it is training
# ==================================================================
if args.inference_only:
peft_model = accelerator.prepare(peft_model)
print("precision: ", peft_model.dtype)
# precision of first_stage_model
print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
print("peft_model device: ", peft_model.device)
# sample shape
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
# latent noise shape
h, w = args.height // 8, args.width // 8
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
frames = peft_model.module.temporal_length if args.frames < 0 else args.frames
channels = peft_model.module.channels
else:
frames = peft_model.temporal_length if args.frames < 0 else args.frames
channels = peft_model.channels
## Inference step 2: run Inference over samples
print("***** Running inference *****")
first_epoch = 0
global_step = 0
## Inference Step 3: generate new validation videos
with torch.no_grad():
prompts_all = [args.prompt_str]
val_prompt = list(prompts_all)
assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!"
# store output of generations in dict
results=dict(filenames=[],dir_name=[], prompt=[])
# Inference Step 3.1: forward pass
batch_size = len(val_prompt)
noise_shape = [batch_size, channels, frames, h, w]
fps = torch.tensor([args.fps]*batch_size).to(accelerator.device).long()
prompts = val_prompt
if isinstance(prompts, str):
prompts = [prompts]
with accelerator.autocast(): # mixed precision
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
text_emb = peft_model.module.get_learned_conditioning(prompts).to(accelerator.device)
else:
text_emb = peft_model.get_learned_conditioning(prompts).to(accelerator.device)
if args.mode == 'base':
cond = {"c_crossattn": [text_emb], "fps": fps}
else: # TODO: implement i2v mode training in the future
raise NotImplementedError
# Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
# no backprop_mode=args.backprop_mode because it is inference process
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
else:
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
print("batch_samples dtype: ", batch_samples.dtype)
print("batch_samples device: ", batch_samples.device)
# batch_samples: b,samples,c,t,h,w
dir_name = os.path.join(output_dir, "samples")
# filenames should be related to the gpu index
# get timestamps for filenames to avoid overwriting
# current_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filenames = [f"temporal"] # only one sample
# if dir_name is not exists, create it
os.makedirs(dir_name, exist_ok=True)
save_videos(batch_samples, dir_name, filenames, fps=args.savefps)
results["filenames"].extend(filenames)
results["dir_name"].extend([dir_name]*len(filenames))
results["prompt"].extend(prompts)
results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
# Inference Step 3.3: collect inference results and save the videos to wandb
# collect inference results from all the GPUs
results_gathered=gather_object(results)
if accelerator.is_main_process:
filenames = []
dir_name = []
prompts = []
for i in range(len(results_gathered)):
filenames.extend(results_gathered[i]["filenames"])
dir_name.extend(results_gathered[i]["dir_name"])
prompts.extend(results_gathered[i]["prompt"])
print("Validation sample saved!")
# # batch size is 1, so only one video is generated
# video = get_videos(batch_samples)
# # read the video from the saved path
video_path = os.path.join(dir_name[0], filenames[0]+".mp4")
# release memory
del batch_samples
torch.cuda.empty_cache()
gc.collect()
return video_path
def setup_model():
parser = get_parser()
args = parser.parse_args()
## ------------------------step 2: model config-----------------------------
# download the checkpoint for VideoCrafter2 model
ckpt_dir = args.ckpt_path.split('/') # args.ckpt='checkpoints/base_512_v2/model.ckpt' -> 'checkpoints/base_512_v2'
ckpt_dir = '/'.join(ckpt_dir[:-1])
snapshot_download(repo_id='VideoCrafter/VideoCrafter2', local_dir=ckpt_dir)
# load the model
config = OmegaConf.load(args.config)
model_config = config.pop("model", OmegaConf.create())
model = instantiate_from_config(model_config)
assert os.path.exists(args.ckpt_path), f"Error: checkpoint [{args.ckpt_path}] Not Found!"
model = load_model_checkpoint(model, args.ckpt_path)
# convert first_stage_model and cond_stage_model to torch.float16 if mixed_precision is True
if args.mixed_precision != 'no':
model.first_stage_model = model.first_stage_model.half()
model.cond_stage_model = model.cond_stage_model.half()
print("Model setup complete!")
print("model dtype: ", model.dtype)
return model
def main_fn(prompt, lora_model, lora_rank, seed=200, height=320, width=512, unconditional_guidance_scale=12, ddim_steps=25, ddim_eta=1.0,
frames=24, savefps=10, model=None):
parser = get_parser()
args = parser.parse_args()
# overwrite the default arguments
args.prompt_str = prompt
args.lora_ckpt_path = lora_model
args.lora_rank = lora_rank
args.seed = seed
args.height = height
args.width = width
args.unconditional_guidance_scale = unconditional_guidance_scale
args.ddim_steps = ddim_steps
args.ddim_eta = ddim_eta
args.frames = frames
args.savefps = savefps
seed_everything(args.seed)
video_path = run_training(args, model)
return video_path
# if main
if __name__ == "__main__":
model = setup_model()
main_fn("a person walking on the street", "huggingface-hps-aesthetic", 16, 200, 320, 512, 12, 25, 1.0, 24, 10, model=model) |