|
|
|
import os, sys, glob |
|
import numpy as np |
|
from collections import OrderedDict |
|
from decord import VideoReader, cpu |
|
import cv2 |
|
import random |
|
|
|
import torch |
|
import torchvision |
|
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) |
|
from lvdm.models.samplers.ddim import DDIMSampler |
|
|
|
|
|
|
|
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ |
|
cfg_scale=1.0, temporal_cfg_scale=None, backprop_mode=None, decode_frame='-1', **kwargs): |
|
ddim_sampler = DDIMSampler(model) |
|
if backprop_mode is not None: |
|
ddim_sampler.backprop_mode = backprop_mode |
|
ddim_sampler.training_mode = True |
|
uncond_type = model.uncond_type |
|
batch_size = noise_shape[0] |
|
|
|
|
|
if cfg_scale != 1.0: |
|
if uncond_type == "empty_seq": |
|
prompts = batch_size * [""] |
|
|
|
uc_emb = model.get_learned_conditioning(prompts) |
|
elif uncond_type == "zero_embed": |
|
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond |
|
uc_emb = torch.zeros_like(c_emb) |
|
|
|
|
|
if hasattr(model, 'embedder'): |
|
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device) |
|
|
|
uc_img = model.get_image_embeds(uc_img) |
|
uc_emb = torch.cat([uc_emb, uc_img], dim=1) |
|
|
|
if isinstance(cond, dict): |
|
uc = {key:cond[key] for key in cond.keys()} |
|
uc.update({'c_crossattn': [uc_emb]}) |
|
else: |
|
uc = uc_emb |
|
else: |
|
uc = None |
|
|
|
x_T = None |
|
batch_variants = [] |
|
|
|
for _ in range(n_samples): |
|
if ddim_sampler is not None: |
|
kwargs.update({"clean_cond": True}) |
|
samples, _ = ddim_sampler.sample(S=ddim_steps, |
|
conditioning=cond, |
|
batch_size=noise_shape[0], |
|
shape=noise_shape[1:], |
|
verbose=False, |
|
unconditional_guidance_scale=cfg_scale, |
|
unconditional_conditioning=uc, |
|
eta=ddim_eta, |
|
temporal_length=noise_shape[2], |
|
conditional_guidance_scale_temporal=temporal_cfg_scale, |
|
x_T=x_T, |
|
**kwargs |
|
) |
|
|
|
|
|
if backprop_mode is not None: |
|
try: |
|
decode_frame=int(decode_frame) |
|
|
|
except: |
|
pass |
|
if type(decode_frame) == int: |
|
frame_index = random.randint(0,samples.shape[2]-1) if decode_frame == -1 else decode_frame |
|
batch_images = model.decode_first_stage_2DAE(samples[:,:,frame_index:frame_index+1,:,:]) |
|
elif decode_frame in ['alt', 'all']: |
|
idxs = range(0, samples.shape[2], 2) if decode_frame == 'alt' else range(samples.shape[2]) |
|
batch_images = model.decode_first_stage_2DAE(samples[:,:,idxs,:,:]) |
|
|
|
|
|
else: |
|
batch_images = model.decode_first_stage_2DAE(samples) |
|
batch_variants.append(batch_images) |
|
|
|
|
|
batch_variants = torch.stack(batch_variants, dim=1) |
|
return batch_variants |
|
|
|
|
|
def get_filelist(data_dir, ext='*'): |
|
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) |
|
file_list.sort() |
|
return file_list |
|
|
|
def get_dirlist(path): |
|
list = [] |
|
if (os.path.exists(path)): |
|
files = os.listdir(path) |
|
for file in files: |
|
m = os.path.join(path,file) |
|
if (os.path.isdir(m)): |
|
list.append(m) |
|
list.sort() |
|
return list |
|
|
|
|
|
def load_model_checkpoint(model, ckpt): |
|
def load_checkpoint(model, ckpt, full_strict): |
|
state_dict = torch.load(ckpt, map_location="cpu") |
|
try: |
|
|
|
new_pl_sd = OrderedDict() |
|
for key in state_dict['module'].keys(): |
|
new_pl_sd[key[16:]]=state_dict['module'][key] |
|
model.load_state_dict(new_pl_sd, strict=full_strict) |
|
except: |
|
if "state_dict" in list(state_dict.keys()): |
|
state_dict = state_dict["state_dict"] |
|
model.load_state_dict(state_dict, strict=full_strict) |
|
return model |
|
load_checkpoint(model, ckpt, full_strict=True) |
|
print('>>> model checkpoint loaded.') |
|
return model |
|
|
|
|
|
def load_prompts(prompt_file): |
|
f = open(prompt_file, 'r') |
|
prompt_list = [] |
|
for idx, line in enumerate(f.readlines()): |
|
l = line.strip() |
|
if len(l) != 0: |
|
prompt_list.append(l) |
|
f.close() |
|
return prompt_list |
|
|
|
|
|
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16): |
|
''' |
|
Notice about some special cases: |
|
1. video_frames=-1 means to take all the frames (with fs=1) |
|
2. when the total video frames is less than required, padding strategy will be used (repreated last frame) |
|
''' |
|
fps_list = [] |
|
batch_tensor = [] |
|
assert frame_stride > 0, "valid frame stride should be a positive interge!" |
|
for filepath in filepath_list: |
|
padding_num = 0 |
|
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0]) |
|
fps = vidreader.get_avg_fps() |
|
total_frames = len(vidreader) |
|
max_valid_frames = (total_frames-1) // frame_stride + 1 |
|
if video_frames < 0: |
|
|
|
required_frames = total_frames |
|
frame_stride = 1 |
|
else: |
|
required_frames = video_frames |
|
query_frames = min(required_frames, max_valid_frames) |
|
frame_indices = [frame_stride*i for i in range(query_frames)] |
|
|
|
|
|
frames = vidreader.get_batch(frame_indices) |
|
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() |
|
frame_tensor = (frame_tensor / 255. - 0.5) * 2 |
|
if max_valid_frames < required_frames: |
|
padding_num = required_frames - max_valid_frames |
|
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1) |
|
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.') |
|
batch_tensor.append(frame_tensor) |
|
sample_fps = int(fps/frame_stride) |
|
fps_list.append(sample_fps) |
|
|
|
return torch.stack(batch_tensor, dim=0) |
|
|
|
from PIL import Image |
|
def load_image_batch(filepath_list, image_size=(256,256)): |
|
batch_tensor = [] |
|
for filepath in filepath_list: |
|
_, filename = os.path.split(filepath) |
|
_, ext = os.path.splitext(filename) |
|
if ext == '.mp4': |
|
vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0]) |
|
frame = vidreader.get_batch([0]) |
|
img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float() |
|
elif ext == '.png' or ext == '.jpg': |
|
img = Image.open(filepath).convert("RGB") |
|
rgb_img = np.array(img, np.float32) |
|
|
|
|
|
rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR) |
|
img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float() |
|
else: |
|
print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]') |
|
raise NotImplementedError |
|
img_tensor = (img_tensor / 255. - 0.5) * 2 |
|
batch_tensor.append(img_tensor) |
|
return torch.stack(batch_tensor, dim=0) |
|
|
|
|
|
def save_videos(batch_tensors, savedir, filenames, fps=10): |
|
|
|
n_samples = batch_tensors.shape[1] |
|
for idx, vid_tensor in enumerate(batch_tensors): |
|
video = vid_tensor.detach().cpu() |
|
video = torch.clamp(video.float(), -1., 1.) |
|
video = video.permute(2, 0, 1, 3, 4) |
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] |
|
grid = torch.stack(frame_grids, dim=0) |
|
grid = (grid + 1.0) / 2.0 |
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) |
|
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4") |
|
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) |
|
|
|
def get_videos(batch_tensors, fps=10): |
|
|
|
n_samples = batch_tensors.shape[1] |
|
vid_tensor = batch_tensors[0] |
|
video = vid_tensor.detach().cpu() |
|
video = torch.clamp(video.float(), -1., 1.) |
|
video = video.permute(2, 0, 1, 3, 4) |
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] |
|
grid = torch.stack(frame_grids, dim=0) |
|
grid = (grid + 1.0) / 2.0 |
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) |
|
|
|
return grid |
|
|
|
|