Spaces:
Sleeping
Sleeping
Enhanced UI with dark mode, streaming progress, and updated dependencies
Browse files- app.py +99 -10
- requirements.txt +16 -10
app.py
CHANGED
@@ -11,6 +11,7 @@ import psutil
|
|
11 |
import plotly.express as px
|
12 |
import plotly.graph_objects as go
|
13 |
import pandas as pd
|
|
|
14 |
|
15 |
from model import RadarDetectionModel
|
16 |
from feature_extraction import (calculate_amplitude, classify_amplitude,
|
@@ -23,7 +24,7 @@ from utils import plot_detection
|
|
23 |
from database import save_report, get_report_history
|
24 |
|
25 |
# Set theme and styling
|
26 |
-
|
27 |
primary_hue="blue",
|
28 |
secondary_hue="indigo",
|
29 |
neutral_hue="slate",
|
@@ -31,6 +32,21 @@ THEME = gr.themes.Soft(
|
|
31 |
text_size=gr.themes.sizes.text_md,
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
class TechnicalReportGenerator:
|
35 |
def __init__(self):
|
36 |
self.timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
@@ -235,11 +251,38 @@ def create_feature_radar_chart(features):
|
|
235 |
|
236 |
return fig
|
237 |
|
238 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
if image is None:
|
240 |
raise gr.Error("Please upload an image.")
|
241 |
|
242 |
# Initialize model if needed
|
|
|
243 |
global model
|
244 |
model, error = initialize_model()
|
245 |
if error:
|
@@ -251,9 +294,11 @@ def process_image(image, generate_tech_report=False):
|
|
251 |
image = Image.fromarray(image)
|
252 |
|
253 |
# Run detection
|
|
|
254 |
detection_result = model.detect(image)
|
255 |
|
256 |
# Extract features
|
|
|
257 |
np_image = np.array(image)
|
258 |
amplitude = calculate_amplitude(np_image)
|
259 |
amplitude_class = classify_amplitude(amplitude)
|
@@ -279,14 +324,17 @@ def process_image(image, generate_tech_report=False):
|
|
279 |
}
|
280 |
|
281 |
# Create visualization charts
|
|
|
282 |
confidence_chart = create_confidence_chart(
|
283 |
detection_result.get('scores', []),
|
284 |
detection_result.get('labels', [])
|
285 |
)
|
286 |
|
287 |
feature_chart = create_feature_radar_chart(features)
|
|
|
288 |
|
289 |
# Start performance tracking
|
|
|
290 |
start_time = time.time()
|
291 |
performance_data = {
|
292 |
'pipeline_stats': {},
|
@@ -336,6 +384,7 @@ def process_image(image, generate_tech_report=False):
|
|
336 |
performance_data['gpu_util'] = get_gpu_utilization()
|
337 |
|
338 |
# Generate analysis report
|
|
|
339 |
analysis_report = generate_report(detection_result, features)
|
340 |
|
341 |
# Prepare output
|
@@ -357,10 +406,12 @@ def process_image(image, generate_tech_report=False):
|
|
357 |
report_path = "temp_tech_report.md"
|
358 |
with open(report_path, "w") as f:
|
359 |
f.write(tech_report)
|
360 |
-
|
361 |
-
return output_image, analysis_report, report_path, confidence_chart, feature_chart
|
362 |
|
363 |
-
|
|
|
|
|
|
|
|
|
364 |
|
365 |
except Exception as e:
|
366 |
error_msg = f"Error processing image: {str(e)}"
|
@@ -404,9 +455,24 @@ def get_gpu_utilization():
|
|
404 |
pass
|
405 |
return 0
|
406 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
# Create Gradio interface
|
408 |
-
with gr.Blocks(theme=
|
409 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
410 |
gr.Markdown("Upload a radar image to analyze defects and generate technical reports")
|
411 |
|
412 |
with gr.Tabs() as tabs:
|
@@ -417,7 +483,9 @@ with gr.Blocks(theme=THEME) as iface:
|
|
417 |
input_image = gr.Image(
|
418 |
type="pil",
|
419 |
label="Upload Radar Image",
|
420 |
-
elem_id="input-image"
|
|
|
|
|
421 |
)
|
422 |
tech_report_checkbox = gr.Checkbox(
|
423 |
label="Generate Technical Report",
|
@@ -460,6 +528,12 @@ with gr.Blocks(theme=THEME) as iface:
|
|
460 |
label="Feature Analysis",
|
461 |
elem_id="feature-plot"
|
462 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
|
464 |
with gr.TabItem("History", id="history"):
|
465 |
with gr.Row():
|
@@ -483,6 +557,11 @@ with gr.Blocks(theme=THEME) as iface:
|
|
483 |
|
484 |
This system uses PaliGemma, a vision-language model that combines SigLIP-So400m (image encoder) and Gemma-2B (text decoder) for joint object detection and multimodal analysis.
|
485 |
|
|
|
|
|
|
|
|
|
|
|
486 |
## Troubleshooting
|
487 |
|
488 |
- If the analysis fails, try uploading a different image format
|
@@ -491,10 +570,17 @@ with gr.Blocks(theme=THEME) as iface:
|
|
491 |
""")
|
492 |
|
493 |
# Set up event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
analyze_button.click(
|
495 |
-
fn=
|
496 |
inputs=[input_image, tech_report_checkbox],
|
497 |
-
outputs=[output_image, output_report, tech_report_output, confidence_plot, feature_plot],
|
498 |
api_name="analyze"
|
499 |
)
|
500 |
|
@@ -512,6 +598,9 @@ with gr.Blocks(theme=THEME) as iface:
|
|
512 |
if (e.key === 'a' && e.ctrlKey) {
|
513 |
document.getElementById('analyze-btn').click();
|
514 |
}
|
|
|
|
|
|
|
515 |
});
|
516 |
}
|
517 |
""")
|
|
|
11 |
import plotly.express as px
|
12 |
import plotly.graph_objects as go
|
13 |
import pandas as pd
|
14 |
+
from functools import partial
|
15 |
|
16 |
from model import RadarDetectionModel
|
17 |
from feature_extraction import (calculate_amplitude, classify_amplitude,
|
|
|
24 |
from database import save_report, get_report_history
|
25 |
|
26 |
# Set theme and styling
|
27 |
+
LIGHT_THEME = gr.themes.Soft(
|
28 |
primary_hue="blue",
|
29 |
secondary_hue="indigo",
|
30 |
neutral_hue="slate",
|
|
|
32 |
text_size=gr.themes.sizes.text_md,
|
33 |
)
|
34 |
|
35 |
+
DARK_THEME = gr.themes.Soft(
|
36 |
+
primary_hue="blue",
|
37 |
+
secondary_hue="indigo",
|
38 |
+
neutral_hue="slate",
|
39 |
+
radius_size=gr.themes.sizes.radius_sm,
|
40 |
+
text_size=gr.themes.sizes.text_md,
|
41 |
+
).set(
|
42 |
+
body_background_fill="*neutral_950",
|
43 |
+
background_fill_primary="*neutral_900",
|
44 |
+
background_fill_secondary="*neutral_800",
|
45 |
+
text_color="*neutral_200",
|
46 |
+
color_accent_soft="*primary_800",
|
47 |
+
border_color_accent_subdued="*primary_700",
|
48 |
+
)
|
49 |
+
|
50 |
class TechnicalReportGenerator:
|
51 |
def __init__(self):
|
52 |
self.timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
251 |
|
252 |
return fig
|
253 |
|
254 |
+
def create_heatmap(image_array):
|
255 |
+
"""Create a heatmap visualization of the image intensity"""
|
256 |
+
if image_array is None:
|
257 |
+
return None
|
258 |
+
|
259 |
+
# Convert to grayscale if needed
|
260 |
+
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
|
261 |
+
gray_img = np.mean(image_array, axis=2)
|
262 |
+
else:
|
263 |
+
gray_img = image_array
|
264 |
+
|
265 |
+
fig = px.imshow(
|
266 |
+
gray_img,
|
267 |
+
color_continuous_scale='inferno',
|
268 |
+
title='Signal Intensity Heatmap'
|
269 |
+
)
|
270 |
+
|
271 |
+
fig.update_layout(
|
272 |
+
xaxis_title='X Position',
|
273 |
+
yaxis_title='Y Position',
|
274 |
+
template='plotly_white'
|
275 |
+
)
|
276 |
+
|
277 |
+
return fig
|
278 |
+
|
279 |
+
def process_image_streaming(image, generate_tech_report=False, progress=gr.Progress()):
|
280 |
+
"""Process image with streaming progress updates"""
|
281 |
if image is None:
|
282 |
raise gr.Error("Please upload an image.")
|
283 |
|
284 |
# Initialize model if needed
|
285 |
+
progress(0.1, desc="Initializing model...")
|
286 |
global model
|
287 |
model, error = initialize_model()
|
288 |
if error:
|
|
|
294 |
image = Image.fromarray(image)
|
295 |
|
296 |
# Run detection
|
297 |
+
progress(0.2, desc="Running detection...")
|
298 |
detection_result = model.detect(image)
|
299 |
|
300 |
# Extract features
|
301 |
+
progress(0.3, desc="Extracting features...")
|
302 |
np_image = np.array(image)
|
303 |
amplitude = calculate_amplitude(np_image)
|
304 |
amplitude_class = classify_amplitude(amplitude)
|
|
|
324 |
}
|
325 |
|
326 |
# Create visualization charts
|
327 |
+
progress(0.5, desc="Creating visualizations...")
|
328 |
confidence_chart = create_confidence_chart(
|
329 |
detection_result.get('scores', []),
|
330 |
detection_result.get('labels', [])
|
331 |
)
|
332 |
|
333 |
feature_chart = create_feature_radar_chart(features)
|
334 |
+
heatmap = create_heatmap(np_image)
|
335 |
|
336 |
# Start performance tracking
|
337 |
+
progress(0.6, desc="Analyzing performance...")
|
338 |
start_time = time.time()
|
339 |
performance_data = {
|
340 |
'pipeline_stats': {},
|
|
|
384 |
performance_data['gpu_util'] = get_gpu_utilization()
|
385 |
|
386 |
# Generate analysis report
|
387 |
+
progress(0.8, desc="Generating reports...")
|
388 |
analysis_report = generate_report(detection_result, features)
|
389 |
|
390 |
# Prepare output
|
|
|
406 |
report_path = "temp_tech_report.md"
|
407 |
with open(report_path, "w") as f:
|
408 |
f.write(tech_report)
|
|
|
|
|
409 |
|
410 |
+
progress(1.0, desc="Analysis complete!")
|
411 |
+
return output_image, analysis_report, report_path, confidence_chart, feature_chart, heatmap
|
412 |
+
|
413 |
+
progress(1.0, desc="Analysis complete!")
|
414 |
+
return output_image, analysis_report, None, confidence_chart, feature_chart, heatmap
|
415 |
|
416 |
except Exception as e:
|
417 |
error_msg = f"Error processing image: {str(e)}"
|
|
|
455 |
pass
|
456 |
return 0
|
457 |
|
458 |
+
def toggle_dark_mode():
|
459 |
+
"""Toggle between light and dark themes"""
|
460 |
+
current_theme = getattr(toggle_dark_mode, "current_theme", "light")
|
461 |
+
if current_theme == "light":
|
462 |
+
toggle_dark_mode.current_theme = "dark"
|
463 |
+
return DARK_THEME
|
464 |
+
else:
|
465 |
+
toggle_dark_mode.current_theme = "light"
|
466 |
+
return LIGHT_THEME
|
467 |
+
|
468 |
# Create Gradio interface
|
469 |
+
with gr.Blocks(theme=LIGHT_THEME) as iface:
|
470 |
+
theme_state = gr.State(LIGHT_THEME)
|
471 |
+
|
472 |
+
with gr.Row():
|
473 |
+
gr.Markdown("# Radar Image Analysis System")
|
474 |
+
dark_mode_btn = gr.Button("🌓 Toggle Dark Mode", scale=0)
|
475 |
+
|
476 |
gr.Markdown("Upload a radar image to analyze defects and generate technical reports")
|
477 |
|
478 |
with gr.Tabs() as tabs:
|
|
|
483 |
input_image = gr.Image(
|
484 |
type="pil",
|
485 |
label="Upload Radar Image",
|
486 |
+
elem_id="input-image",
|
487 |
+
sources=["upload", "webcam", "clipboard"],
|
488 |
+
tool="editor"
|
489 |
)
|
490 |
tech_report_checkbox = gr.Checkbox(
|
491 |
label="Generate Technical Report",
|
|
|
528 |
label="Feature Analysis",
|
529 |
elem_id="feature-plot"
|
530 |
)
|
531 |
+
|
532 |
+
with gr.Row():
|
533 |
+
heatmap_plot = gr.Plot(
|
534 |
+
label="Signal Intensity Heatmap",
|
535 |
+
elem_id="heatmap-plot"
|
536 |
+
)
|
537 |
|
538 |
with gr.TabItem("History", id="history"):
|
539 |
with gr.Row():
|
|
|
557 |
|
558 |
This system uses PaliGemma, a vision-language model that combines SigLIP-So400m (image encoder) and Gemma-2B (text decoder) for joint object detection and multimodal analysis.
|
559 |
|
560 |
+
## Keyboard Shortcuts
|
561 |
+
|
562 |
+
- **Ctrl+A**: Trigger analysis
|
563 |
+
- **Ctrl+D**: Toggle dark mode
|
564 |
+
|
565 |
## Troubleshooting
|
566 |
|
567 |
- If the analysis fails, try uploading a different image format
|
|
|
570 |
""")
|
571 |
|
572 |
# Set up event handlers
|
573 |
+
dark_mode_btn.click(
|
574 |
+
fn=toggle_dark_mode,
|
575 |
+
inputs=[],
|
576 |
+
outputs=[iface],
|
577 |
+
api_name="toggle_theme"
|
578 |
+
)
|
579 |
+
|
580 |
analyze_button.click(
|
581 |
+
fn=process_image_streaming,
|
582 |
inputs=[input_image, tech_report_checkbox],
|
583 |
+
outputs=[output_image, output_report, tech_report_output, confidence_plot, feature_plot, heatmap_plot],
|
584 |
api_name="analyze"
|
585 |
)
|
586 |
|
|
|
598 |
if (e.key === 'a' && e.ctrlKey) {
|
599 |
document.getElementById('analyze-btn').click();
|
600 |
}
|
601 |
+
if (e.key === 'd' && e.ctrlKey) {
|
602 |
+
document.querySelector('button:contains("Toggle Dark Mode")').click();
|
603 |
+
}
|
604 |
});
|
605 |
}
|
606 |
""")
|
requirements.txt
CHANGED
@@ -1,16 +1,22 @@
|
|
1 |
gradio>=5.18.0
|
2 |
-
torch>=2.1.
|
3 |
-
transformers>=4.
|
4 |
-
Pillow>=10.
|
5 |
-
numpy>=1.26.
|
6 |
-
matplotlib>=3.8.
|
7 |
-
pandas>=2.1.
|
8 |
-
sqlalchemy>=2.0.
|
9 |
plotly>=5.18.0
|
10 |
scikit-learn>=1.3.2
|
11 |
-
jinja2>=3.1.
|
12 |
-
huggingface-hub>=0.
|
13 |
python-dotenv>=1.0.0
|
14 |
markdown>=3.5.1
|
15 |
psutil>=5.9.6
|
16 |
-
tqdm>=4.66.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio>=5.18.0
|
2 |
+
torch>=2.1.2
|
3 |
+
transformers>=4.37.2
|
4 |
+
Pillow>=10.2.0
|
5 |
+
numpy>=1.26.3
|
6 |
+
matplotlib>=3.8.2
|
7 |
+
pandas>=2.1.4
|
8 |
+
sqlalchemy>=2.0.25
|
9 |
plotly>=5.18.0
|
10 |
scikit-learn>=1.3.2
|
11 |
+
jinja2>=3.1.3
|
12 |
+
huggingface-hub>=0.20.2
|
13 |
python-dotenv>=1.0.0
|
14 |
markdown>=3.5.1
|
15 |
psutil>=5.9.6
|
16 |
+
tqdm>=4.66.1
|
17 |
+
accelerate>=0.25.0
|
18 |
+
safetensors>=0.4.1
|
19 |
+
peft>=0.7.1
|
20 |
+
optimum>=1.14.0
|
21 |
+
colorama>=0.4.6
|
22 |
+
rich>=13.7.0
|