File size: 26,477 Bytes
2e90551
 
 
10c708b
 
2e90551
 
10c708b
2e90551
 
 
9b53de6
2e90551
 
 
 
 
 
55ed985
2e90551
55ed985
2e90551
 
 
 
10c708b
2e90551
10c708b
 
 
 
 
 
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
9b53de6
 
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c708b
 
 
81e9969
10c708b
 
ffe3ce4
4d0533e
10c708b
 
4d0533e
0fd2448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
 
da4caa5
ffe3ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd2448
 
 
 
10c708b
0fd2448
10c708b
0fd2448
ffe3ce4
 
 
 
 
 
 
 
0fd2448
 
 
ffe3ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6c4ad
 
 
0111b97
4a6c4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
 
 
 
 
 
 
 
 
4d0533e
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c708b
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c708b
2e90551
 
 
 
 
4a6c4ad
211069d
2e90551
 
 
 
4a6c4ad
5e0a3ac
2e90551
4d0533e
2e90551
 
5e0a3ac
2e90551
 
10c708b
4a6c4ad
211069d
2e90551
 
 
ffe3ce4
5e0a3ac
ffe3ce4
2e90551
5e0a3ac
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e0a3ac
ca03543
 
5e0a3ac
 
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
4a6c4ad
2e90551
 
 
 
 
 
 
 
 
 
 
 
5e0a3ac
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
211069d
 
 
 
ffe3ce4
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
10c708b
2e90551
 
 
10c708b
 
4a6c4ad
2e90551
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
ffe3ce4
 
2e90551
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
ffe3ce4
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
 
 
 
ffe3ce4
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
 
10c708b
 
 
 
2e90551
 
ffe3ce4
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
2e90551
 
 
 
ffe3ce4
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e0a3ac
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
ffe3ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
import gc
import logging
import os
import shutil
import subprocess
import sys
from glob import glob

import cv2
import gradio as gr
import numpy as np
import spaces
import torch
import trimesh
from easydict import EasyDict as edict
from PIL import Image
from tqdm import tqdm
from asset3d_gen.data.backproject_v2 import entrypoint as backproject_api
from asset3d_gen.models.delight_model import DelightingModel
from asset3d_gen.models.gs_model import GaussianOperator
from asset3d_gen.models.segment_model import (
    RembgRemover,
    SAMPredictor,
    trellis_preprocess,
)
from asset3d_gen.models.sr_model import ImageRealESRGAN
from asset3d_gen.scripts.render_gs import entrypoint as render_gs_api
from asset3d_gen.scripts.render_mv import build_texture_gen_pipe, infer_pipe
from asset3d_gen.scripts.text2image import (
    build_text2img_ip_pipeline,
    build_text2img_pipeline,
    text2img_gen,
)
from asset3d_gen.utils.gpt_clients import GPT_CLIENT
from asset3d_gen.utils.process_media import (
    filter_image_small_connected_components,
    merge_images_video,
    render_asset3d,
)
from asset3d_gen.utils.tags import VERSION
from asset3d_gen.validators.quality_checkers import (
    BaseChecker,
    ImageAestheticChecker,
    ImageSegChecker,
    MeshGeoChecker,
)
from asset3d_gen.validators.urdf_convertor import URDFGenerator, zip_files

current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_dir, "../.."))
from thirdparty.TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer
from thirdparty.TRELLIS.trellis.representations import (
    Gaussian,
    MeshExtractResult,
)
from thirdparty.TRELLIS.trellis.utils import postprocessing_utils
from thirdparty.TRELLIS.trellis.utils.render_utils import (
    render_frames,
    yaw_pitch_r_fov_to_extrinsics_intrinsics,
)

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


os.environ["TORCH_EXTENSIONS_DIR"] = os.path.expanduser(
    "~/.cache/torch_extensions"
)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
os.environ['SPCONV_ALGO'] = 'native'

MAX_SEED = 100000
DELIGHT = DelightingModel()
IMAGESR_MODEL = ImageRealESRGAN(outscale=4)


def download_kolors_weights() -> None:
    logger.info(f"Download kolors weights from huggingface...")
    subprocess.run(
        [
            "huggingface-cli", "download", "--resume-download",
            "Kwai-Kolors/Kolors", "--local-dir", "weights/Kolors"
        ],
        check=True
    )
    subprocess.run(
        [
            "huggingface-cli", "download", "--resume-download",
            "Kwai-Kolors/Kolors-IP-Adapter-Plus", "--local-dir", 
            "weights/Kolors-IP-Adapter-Plus"
        ],
        check=True
    )


if os.getenv("GRADIO_APP") == "imageto3d":
    RBG_REMOVER = RembgRemover()
    SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
    PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
        "JeffreyXiang/TRELLIS-image-large"
    )
    # PIPELINE.cuda()
    SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
    GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
    AESTHETIC_CHECKER = ImageAestheticChecker()
    CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER]
    TMP_DIR = os.path.join(
        os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d"
    )
elif os.getenv("GRADIO_APP") == "textto3d":
    RBG_REMOVER = RembgRemover()
    PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
        "JeffreyXiang/TRELLIS-image-large"
    )
    # PIPELINE.cuda()
    text_model_dir = "weights/Kolors"
    if not os.path.exists(text_model_dir):
        download_kolors_weights()

    PIPELINE_IMG_IP = build_text2img_ip_pipeline(
        text_model_dir, ref_scale=0.3
    )
    PIPELINE_IMG = build_text2img_pipeline(text_model_dir)
    SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
    GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
    AESTHETIC_CHECKER = ImageAestheticChecker()
    CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER]
    TMP_DIR = os.path.join(
        os.path.dirname(os.path.abspath(__file__)), "sessions/textto3d"
    )
elif os.getenv("GRADIO_APP") == "texture_edit":
    if not os.path.exists("weights/Kolors"):
        download_kolors_weights()

    PIPELINE_IP = build_texture_gen_pipe(
        base_ckpt_dir="./weights",
        ip_adapt_scale=0.7,
        device="cuda",
    )
    PIPELINE = build_texture_gen_pipe(
        base_ckpt_dir="./weights",
        ip_adapt_scale=0,
        device="cuda",
    )
    TMP_DIR = os.path.join(
        os.path.dirname(os.path.abspath(__file__)), "sessions/texture_edit"
    )

os.makedirs(TMP_DIR, exist_ok=True)


lighting_css = """
<style>
#lighter_mesh canvas {
    filter: brightness(1.6) !important;
}
</style>
"""

image_css = """
<style>
.image_fit .image-frame {
object-fit: contain !important;
height: 100% !important;
}
</style>
"""


def start_session(req: gr.Request) -> None:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)


def end_session(req: gr.Request) -> None:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    if os.path.exists(user_dir):
        shutil.rmtree(user_dir)


@spaces.GPU
def render_mesh(sample, extrinsics, intrinsics, options={}, **kwargs):
    renderer = MeshRenderer()
    renderer.rendering_options.resolution = options.get("resolution", 512)
    renderer.rendering_options.near = options.get("near", 1)
    renderer.rendering_options.far = options.get("far", 100)
    renderer.rendering_options.ssaa = options.get("ssaa", 4)
    rets = {}
    for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"):
        res = renderer.render(sample, extr, intr)
        if "normal" not in rets:
            rets["normal"] = []
        normal = torch.lerp(
            torch.zeros_like(res["normal"]), res["normal"], res["mask"]
        )
        normal = np.clip(
            normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
        ).astype(np.uint8)
        rets["normal"].append(normal)

    return rets


@spaces.GPU
def render_video(
    sample,
    resolution=512,
    bg_color=(0, 0, 0),
    num_frames=300,
    r=2,
    fov=40,
    **kwargs,
):
    yaws = torch.linspace(0, 2 * 3.1415, num_frames)
    yaws = yaws.tolist()
    pitch = [0.5] * num_frames
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(
        yaws, pitch, r, fov
    )
    render_fn = (
        render_mesh if isinstance(sample, MeshExtractResult) else render_frames
    )
    result = render_fn(
        sample,
        extrinsics,
        intrinsics,
        {"resolution": resolution, "bg_color": bg_color},
        **kwargs,
    )

    return result


@spaces.GPU
def preprocess_image_fn(
    image: str | np.ndarray | Image.Image,
) -> tuple[Image.Image, Image.Image]:
    if isinstance(image, str):
        image = Image.open(image)
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image_cache = image.copy().resize((512, 512))

    image = RBG_REMOVER(image)
    image = trellis_preprocess(image)

    return image, image_cache


def preprocess_sam_image_fn(
    image: Image.Image,
) -> tuple[Image.Image, Image.Image]:
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    sam_image = SAM_PREDICTOR.preprocess_image(image)
    image_cache = Image.fromarray(sam_image).resize((512, 512))
    SAM_PREDICTOR.predictor.set_image(sam_image)

    return sam_image, image_cache


def active_btn_by_content(content: gr.Image) -> gr.Button:
    interactive = True if content is not None else False

    return gr.Button(interactive=interactive)


def active_btn_by_text_content(content: gr.Textbox) -> gr.Button:
    if content is not None and len(content) > 0:
        interactive = True
    else:
        interactive = False

    return gr.Button(interactive=interactive)


def get_selected_image(
    choice: str, sample1: str, sample2: str, sample3: str
) -> str:
    if choice == "sample1":
        return sample1
    elif choice == "sample2":
        return sample2
    elif choice == "sample3":
        return sample3
    else:
        raise ValueError(f"Invalid choice: {choice}")


def get_cached_image(image_path: str) -> Image.Image:
    if isinstance(image_path, Image.Image):
        return image_path
    return Image.open(image_path).resize((512, 512))


@spaces.GPU
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        "gaussian": {
            **gs.init_params,
            "_xyz": gs._xyz.cpu().numpy(),
            "_features_dc": gs._features_dc.cpu().numpy(),
            "_scaling": gs._scaling.cpu().numpy(),
            "_rotation": gs._rotation.cpu().numpy(),
            "_opacity": gs._opacity.cpu().numpy(),
        },
        "mesh": {
            "vertices": mesh.vertices.cpu().numpy(),
            "faces": mesh.faces.cpu().numpy(),
        },
    }


@spaces.GPU
def unpack_state(state: dict) -> tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state["gaussian"]["aabb"],
        sh_degree=state["gaussian"]["sh_degree"],
        mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
        scaling_bias=state["gaussian"]["scaling_bias"],
        opacity_bias=state["gaussian"]["opacity_bias"],
        scaling_activation=state["gaussian"]["scaling_activation"],
    )
    gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
    gs._features_dc = torch.tensor(
        state["gaussian"]["_features_dc"], device="cuda"
    )
    gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
    gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
    gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")

    mesh = edict(
        vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
        faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
    )

    return gs, mesh


def get_seed(randomize_seed: bool, seed: int, max_seed: int = MAX_SEED) -> int:
    return np.random.randint(0, max_seed) if randomize_seed else seed


def select_point(
    image: np.ndarray,
    sel_pix: list,
    point_type: str,
    evt: gr.SelectData,
):
    if point_type == "foreground_point":
        sel_pix.append((evt.index, 1))  # append the foreground_point
    elif point_type == "background_point":
        sel_pix.append((evt.index, 0))  # append the background_point
    else:
        sel_pix.append((evt.index, 1))  # default foreground_point

    masks = SAM_PREDICTOR.generate_masks(image, sel_pix)
    seg_image = SAM_PREDICTOR.get_segmented_image(image, masks)

    for point, label in sel_pix:
        color = (255, 0, 0) if label == 0 else (0, 255, 0)
        marker_type = 1 if label == 0 else 5
        cv2.drawMarker(
            image,
            point,
            color,
            markerType=marker_type,
            markerSize=15,
            thickness=10,
        )

    torch.cuda.empty_cache()

    return (image, masks), seg_image


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    raw_image_cache: Image.Image,
    sam_image: Image.Image = None,
    is_sam_image: bool = False,
    req: gr.Request = None,
) -> tuple[dict, str]:
    if is_sam_image:
        seg_image = filter_image_small_connected_components(sam_image)
        seg_image = Image.fromarray(seg_image, mode="RGBA")
        seg_image = trellis_preprocess(seg_image)
    else:
        seg_image = image

    if isinstance(seg_image, np.ndarray):
        seg_image = Image.fromarray(seg_image)

    output_root = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(output_root, exist_ok=True)
    seg_image.save(f"{output_root}/seg_image.png")
    raw_image_cache.save(f"{output_root}/raw_image.png")
    PIPELINE.cuda()
    outputs = PIPELINE.run(
        seg_image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    # Set to cpu for memory saving.
    PIPELINE.cpu()

    gs_model = outputs["gaussian"][0]
    mesh_model = outputs["mesh"][0]
    color_images = render_video(gs_model)["color"]
    normal_images = render_video(mesh_model)["normal"]

    video_path = os.path.join(output_root, "gs_mesh.mp4")
    merge_images_video(color_images, normal_images, video_path)
    state = pack_state(gs_model, mesh_model)

    gc.collect()
    torch.cuda.empty_cache()

    return state, video_path


@spaces.GPU
def extract_3d_representations(
    state: dict, enable_delight: bool, req: gr.Request
):
    output_root = TMP_DIR
    output_root = os.path.join(output_root, str(req.session_hash))
    gs_model, mesh_model = unpack_state(state)

    mesh = postprocessing_utils.to_glb(
        gs_model,
        mesh_model,
        simplify=0.9,
        texture_size=1024,
        verbose=True,
    )
    filename = "sample"
    gs_path = os.path.join(output_root, f"{filename}_gs.ply")
    gs_model.save_ply(gs_path)

    # Rotate mesh and GS by 90 degrees around Z-axis.
    rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
    # Addtional rotation for GS to align mesh.
    gs_rot = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) @ np.array(
        rot_matrix
    )
    pose = GaussianOperator.trans_to_quatpose(gs_rot)
    aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
    GaussianOperator.resave_ply(
        in_ply=gs_path,
        out_ply=aligned_gs_path,
        instance_pose=pose,
    )

    mesh.vertices = mesh.vertices @ np.array(rot_matrix)
    mesh_obj_path = os.path.join(output_root, f"{filename}.obj")
    mesh.export(mesh_obj_path)
    mesh_glb_path = os.path.join(output_root, f"{filename}.glb")
    mesh.export(mesh_glb_path)

    torch.cuda.empty_cache()

    return mesh_glb_path, gs_path, mesh_obj_path, aligned_gs_path


@spaces.GPU
def extract_3d_representations_v2(
    state: dict,
    enable_delight: bool,
    req: gr.Request,
):
    output_root = TMP_DIR
    user_dir = os.path.join(output_root, str(req.session_hash))
    gs_model, mesh_model = unpack_state(state)

    filename = "sample"
    gs_path = os.path.join(user_dir, f"{filename}_gs.ply")
    gs_model.save_ply(gs_path)

    # Rotate mesh and GS by 90 degrees around Z-axis.
    rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
    gs_add_rot = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
    mesh_add_rot = [[1, 0, 0], [0, 0, -1], [0, 1, 0]]

    # Addtional rotation for GS to align mesh.
    gs_rot = np.array(gs_add_rot) @ np.array(rot_matrix)
    pose = GaussianOperator.trans_to_quatpose(gs_rot)
    aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
    GaussianOperator.resave_ply(
        in_ply=gs_path,
        out_ply=aligned_gs_path,
        instance_pose=pose,
    )
    color_path = os.path.join(user_dir, "color.png")
    render_gs_api(aligned_gs_path, color_path)

    mesh = trimesh.Trimesh(
        vertices=mesh_model.vertices.cpu().numpy(),
        faces=mesh_model.faces.cpu().numpy(),
    )
    mesh.vertices = mesh.vertices @ np.array(mesh_add_rot)
    mesh.vertices = mesh.vertices @ np.array(rot_matrix)

    mesh_obj_path = os.path.join(user_dir, f"{filename}.obj")
    mesh.export(mesh_obj_path)

    mesh = backproject_api(
        delight_model=DELIGHT,
        imagesr_model=IMAGESR_MODEL,
        color_path=color_path,
        mesh_path=mesh_obj_path,
        output_path=mesh_obj_path,
        skip_fix_mesh=False,
        delight=enable_delight,
    )

    mesh_glb_path = os.path.join(user_dir, f"{filename}.glb")
    mesh.export(mesh_glb_path)

    torch.cuda.empty_cache()

    return mesh_glb_path, gs_path, mesh_obj_path, aligned_gs_path


@spaces.GPU
def extract_urdf(
    gs_path: str,
    mesh_obj_path: str,
    asset_cat_text: str,
    height_range_text: str,
    mass_range_text: str,
    asset_version_text: str,
    req: gr.Request = None,
):
    output_root = TMP_DIR
    if req is not None:
        output_root = os.path.join(output_root, str(req.session_hash))
    # Convert to URDF and recover attrs by gpt4o
    filename = "sample"
    urdf_convertor = URDFGenerator(GPT_CLIENT, render_view_num=4)
    asset_attrs = {
        "version": VERSION,
        "gs_model": f"{urdf_convertor.output_mesh_dir}/{filename}_gs.ply",
    }
    if asset_version_text:
        asset_attrs["version"] = asset_version_text
    if asset_cat_text:
        asset_attrs["category"] = asset_cat_text.lower()
    if height_range_text:
        try:
            min_height, max_height = map(float, height_range_text.split("-"))
            asset_attrs["min_height"] = min_height
            asset_attrs["max_height"] = max_height
        except ValueError:
            return "Invalid height input format. Use the format: min-max."
    if mass_range_text:
        try:
            min_mass, max_mass = map(float, mass_range_text.split("-"))
            asset_attrs["min_mass"] = min_mass
            asset_attrs["max_mass"] = max_mass
        except ValueError:
            return "Invalid mass input format. Use the format: min-max."

    urdf_path = urdf_convertor(
        mesh_path=mesh_obj_path,
        output_root=f"{output_root}/URDF_{filename}",
        **asset_attrs,
    )

    # Rescale GS and save to URDF/mesh folder.
    real_height = urdf_convertor.get_attr_from_urdf(
        urdf_path, attr_name="real_height"
    )
    out_gs = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}_gs.ply"  # noqa
    GaussianOperator.resave_ply(
        in_ply=gs_path,
        out_ply=out_gs,
        real_height=real_height,
    )

    # Quality check and update .urdf file.
    mesh_out = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}.obj"  # noqa
    trimesh.load(mesh_out).export(mesh_out.replace(".obj", ".glb"))
    # image_paths = render_asset3d(
    #     mesh_path=mesh_out,
    #     output_root=f"{output_root}/URDF_{filename}",
    #     output_subdir="qa_renders",
    #     num_images=8,
    #     elevation=(30, -30),
    #     distance=5.5,
    # )

    image_dir = f"{output_root}/URDF_{filename}/{urdf_convertor.output_render_dir}/image_color"  # noqa
    image_paths = glob(f"{image_dir}/*.png")
    images_list = []
    for checker in CHECKERS:
        images = image_paths
        if isinstance(checker, ImageSegChecker):
            images = [
                f"{TMP_DIR}/{req.session_hash}/raw_image.png",
                f"{TMP_DIR}/{req.session_hash}/seg_image.png",
            ]
        images_list.append(images)

    results = BaseChecker.validate(CHECKERS, images_list)
    urdf_convertor.add_quality_tag(urdf_path, results)

    # Zip urdf files
    urdf_zip = zip_files(
        input_paths=[
            f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}",
            f"{output_root}/URDF_{filename}/{filename}.urdf",
        ],
        output_zip=f"{output_root}/urdf_{filename}.zip",
    )

    torch.cuda.empty_cache()

    estimated_type = urdf_convertor.estimated_attrs["category"]
    estimated_height = urdf_convertor.estimated_attrs["height"]
    estimated_mass = urdf_convertor.estimated_attrs["mass"]
    estimated_mu = urdf_convertor.estimated_attrs["mu"]

    return (
        urdf_zip,
        estimated_type,
        estimated_height,
        estimated_mass,
        estimated_mu,
    )


@spaces.GPU
def text2image_fn(
    prompt: str,
    guidance_scale: float,
    infer_step: int = 50,
    ip_image: Image.Image | str = None,
    ip_adapt_scale: float = 0.3,
    image_wh: int | tuple[int, int] = [1024, 1024],
    n_sample: int = 3,
    postprocess: bool = True,
    req: gr.Request = None,
):
    if isinstance(image_wh, int):
        image_wh = (image_wh, image_wh)
    output_root = TMP_DIR
    if req is not None:
        output_root = os.path.join(output_root, str(req.session_hash))
        os.makedirs(output_root, exist_ok=True)

    pipeline = PIPELINE_IMG if ip_image is None else PIPELINE_IMG_IP
    if ip_image is not None:
        pipeline.set_ip_adapter_scale([ip_adapt_scale])

    images = text2img_gen(
        prompt=prompt,
        n_sample=n_sample,
        guidance_scale=guidance_scale,
        pipeline=pipeline,
        ip_image=ip_image,
        image_wh=image_wh,
        infer_step=infer_step,
    )
    if postprocess:
        for idx in range(len(images)):
            image = images[idx]
            images[idx] = preprocess_image_fn(image, req)

    save_paths = []
    for idx, image in enumerate(images):
        save_path = f"{output_root}/sample_{idx}.png"
        image.save(save_path)
        save_paths.append(save_path)

    logger.info(f"Images saved to {output_root}")

    gc.collect()
    torch.cuda.empty_cache()

    return save_paths + save_paths


@spaces.GPU
def generate_condition(mesh_path: str, req: gr.Request, uuid: str = "sample"):
    output_root = os.path.join(TMP_DIR, str(req.session_hash))
    command = [
        "drender-cli",
        "--mesh_path",
        mesh_path,
        "--output_root",
        f"{output_root}/condition",
        "--uuid",
        f"{uuid}",
    ]

    _ = subprocess.run(
        command, capture_output=True, text=True, encoding="utf-8"
    )

    gc.collect()
    torch.cuda.empty_cache()

    return None, None, None


@spaces.GPU
def generate_texture_mvimages(
    prompt: str,
    controlnet_cond_scale: float = 0.55,
    guidance_scale: float = 9,
    strength: float = 0.9,
    num_inference_steps: int = 50,
    seed: int = 0,
    ip_adapt_scale: float = 0,
    ip_img_path: str = None,
    uid: str = "sample",
    sub_idxs: tuple[tuple[int]] = ((0, 1, 2), (3, 4, 5)),
    req: gr.Request = None,
) -> list[str]:
    output_root = os.path.join(TMP_DIR, str(req.session_hash))
    use_ip_adapter = True if ip_img_path and ip_adapt_scale > 0 else False
    PIPELINE_IP.set_ip_adapter_scale([ip_adapt_scale])
    img_save_paths = infer_pipe(
        index_file=f"{output_root}/condition/index.json",
        controlnet_cond_scale=controlnet_cond_scale,
        guidance_scale=guidance_scale,
        strength=strength,
        num_inference_steps=num_inference_steps,
        ip_adapt_scale=ip_adapt_scale,
        ip_img_path=ip_img_path,
        uid=uid,
        prompt=prompt,
        save_dir=f"{output_root}/multi_view",
        sub_idxs=sub_idxs,
        pipeline=PIPELINE_IP if use_ip_adapter else PIPELINE,
        seed=seed,
    )

    gc.collect()
    torch.cuda.empty_cache()

    return img_save_paths + img_save_paths


@spaces.GPU
def backproject_texture(
    mesh_path: str,
    input_image: str,
    texture_size: int,
    uuid: str = "sample",
    req: gr.Request = None,
) -> str:
    output_root = os.path.join(TMP_DIR, str(req.session_hash))
    output_dir = os.path.join(output_root, "texture_mesh")
    os.makedirs(output_dir, exist_ok=True)
    command = [
        "backproject-cli",
        "--mesh_path",
        mesh_path,
        "--input_image",
        input_image,
        "--output_root",
        output_dir,
        "--uuid",
        f"{uuid}",
        "--texture_size",
        str(texture_size),
        "--skip_fix_mesh",
    ]

    _ = subprocess.run(
        command, capture_output=True, text=True, encoding="utf-8"
    )
    output_obj_mesh = os.path.join(output_dir, f"{uuid}.obj")
    output_glb_mesh = os.path.join(output_dir, f"{uuid}.glb")
    _ = trimesh.load(output_obj_mesh).export(output_glb_mesh)

    zip_file = zip_files(
        input_paths=[
            output_glb_mesh,
            output_obj_mesh,
            os.path.join(output_dir, "material.mtl"),
            os.path.join(output_dir, "material_0.png"),
        ],
        output_zip=os.path.join(output_dir, f"{uuid}.zip"),
    )

    gc.collect()
    torch.cuda.empty_cache()

    return output_glb_mesh, output_obj_mesh, zip_file


@spaces.GPU
def backproject_texture_v2(
    mesh_path: str,
    input_image: str,
    texture_size: int,
    enable_delight: bool = True,
    fix_mesh: bool = False,
    uuid: str = "sample",
    req: gr.Request = None,
) -> str:
    output_root = os.path.join(TMP_DIR, str(req.session_hash))
    output_dir = os.path.join(output_root, "texture_mesh")
    os.makedirs(output_dir, exist_ok=True)

    textured_mesh = backproject_api(
        delight_model=DELIGHT,
        imagesr_model=IMAGESR_MODEL,
        color_path=input_image,
        mesh_path=mesh_path,
        output_path=f"{output_dir}/{uuid}.obj",
        skip_fix_mesh=not fix_mesh,
        delight=enable_delight,
        texture_wh=[texture_size, texture_size],
    )

    output_obj_mesh = os.path.join(output_dir, f"{uuid}.obj")
    output_glb_mesh = os.path.join(output_dir, f"{uuid}.glb")
    _ = textured_mesh.export(output_glb_mesh)

    zip_file = zip_files(
        input_paths=[
            output_glb_mesh,
            output_obj_mesh,
            os.path.join(output_dir, "material.mtl"),
            os.path.join(output_dir, "material_0.png"),
        ],
        output_zip=os.path.join(output_dir, f"{uuid}.zip"),
    )

    gc.collect()
    torch.cuda.empty_cache()

    return output_glb_mesh, output_obj_mesh, zip_file


@spaces.GPU
def render_result_video(
    mesh_path: str, video_size: int, req: gr.Request, uuid: str = ""
) -> str:
    output_root = os.path.join(TMP_DIR, str(req.session_hash))
    output_dir = os.path.join(output_root, "texture_mesh")
    command = [
        "drender-cli",
        "--mesh_path",
        mesh_path,
        "--output_root",
        output_dir,
        "--num_images",
        "90",
        "--elevation",
        "20",
        "--with_mtl",
        "--pbr_light_factor",
        "1.",
        "--uuid",
        f"{uuid}",
        "--gen_color_mp4",
        "--gen_glonormal_mp4",
        "--distance",
        "5.5",
        "--resolution_hw",
        f"{video_size}",
        f"{video_size}",
    ]

    _ = subprocess.run(
        command, capture_output=True, text=True, encoding="utf-8"
    )

    gc.collect()
    torch.cuda.empty_cache()

    return f"{output_dir}/color.mp4"