File size: 3,531 Bytes
2e90551
 
 
 
 
 
011981e
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import logging
import os
from typing import Union

import numpy as np
import torch
from huggingface_hub import snapshot_download
from PIL import Image
from asset3d_gen.data.utils import get_images_from_grid


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


__all__ = [
    "ImageStableSR",
    "ImageRealESRGAN",
]


class ImageStableSR:
    def __init__(
        self,
        model_path: str = "stabilityai/stable-diffusion-x4-upscaler",
        device="cuda",
    ) -> None:
        from diffusers import StableDiffusionUpscalePipeline

        self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
            model_path,
            torch_dtype=torch.float16,
        ).to(device)
        self.up_pipeline_x4.set_progress_bar_config(disable=True)
        self.up_pipeline_x4.enable_model_cpu_offload()

    def __call__(
        self,
        image: Union[Image.Image, np.ndarray],
        prompt: str = "",
        infer_step: int = 20,
    ) -> Image.Image:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        image = image.convert("RGB")

        with torch.no_grad():
            upscaled_image = self.up_pipeline_x4(
                image=image,
                prompt=[prompt],
                num_inference_steps=infer_step,
            ).images[0]

        return upscaled_image


class ImageRealESRGAN:
    def __init__(self, outscale: int, model_path: str = None) -> None:
        from basicsr.archs.rrdbnet_arch import RRDBNet
        from realesrgan import RealESRGANer

        self.outscale = outscale
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        if model_path is None:
            suffix = "super_resolution"
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
            )
            model_path = os.path.join(
                model_path, suffix, "RealESRGAN_x4plus.pth"
            )

        self.upsampler = RealESRGANer(
            scale=4,
            model_path=model_path,
            model=model,
            pre_pad=0,
            half=True,
        )

    def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
        if isinstance(image, Image.Image):
            image = np.array(image)

        with torch.no_grad():
            output, _ = self.upsampler.enhance(image, outscale=self.outscale)

        return Image.fromarray(output)


if __name__ == "__main__":
    color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"

    # Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
    # model_path = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/super_resolution/RealESRGAN_x4plus.pth"  # noqa
    super_model = ImageRealESRGAN(outscale=4)
    multiviews = get_images_from_grid(color_path, img_size=512)
    multiviews = [super_model(img.convert("RGB")) for img in multiviews]
    for idx, img in enumerate(multiviews):
        img.save(f"sr{idx}.png")

    # # Use stable diffusion for x4 (512->2048) image super resolution.
    # super_model = ImageStableSR()
    # multiviews = get_images_from_grid(color_path, img_size=512)
    # multiviews = [super_model(img) for img in multiviews]
    # for idx, img in enumerate(multiviews):
    #     img.save(f"sr_stable{idx}.png")