File size: 20,153 Bytes
55ed985
 
 
 
146eff7
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146eff7
55ed985
 
 
 
 
 
 
 
 
146eff7
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146eff7
55ed985
 
 
146eff7
 
55ed985
146eff7
 
 
 
55ed985
 
 
 
146eff7
55ed985
146eff7
 
55ed985
 
 
 
146eff7
 
 
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146eff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import argparse
import logging
import math
import os
import spaces
import cv2
import numpy as np
import nvdiffrast.torch as dr
import torch
import torch.nn.functional as F
import trimesh
import xatlas
from PIL import Image
from asset3d_gen.data.mesh_operator import MeshFixer
from asset3d_gen.data.utils import (
    CameraSetting,
    DiffrastRender,
    get_images_from_grid,
    init_kal_camera,
    normalize_vertices_array,
    post_process_texture,
    save_mesh_with_mtl,
)
from asset3d_gen.models.delight_model import DelightingModel
from asset3d_gen.models.sr_model import ImageRealESRGAN

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


__all__ = [
    "TextureBacker",
]


def transform_vertices(
    mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
) -> torch.Tensor:
    """Transform 3D vertices using a projection matrix."""
    t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
    if pos.size(-1) == 3:
        pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)

    result = pos @ t_mtx.T

    return result if keepdim else result.unsqueeze(0)


def _bilinear_interpolation_scattering(
    image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
) -> torch.Tensor:
    """Bilinear interpolation scattering for grid-based value accumulation."""
    device = values.device
    dtype = values.dtype
    C = values.shape[-1]

    indices = coords * torch.tensor(
        [image_h - 1, image_w - 1], dtype=dtype, device=device
    )
    i, j = indices.unbind(-1)

    i0, j0 = (
        indices.floor()
        .long()
        .clamp(0, image_h - 2)
        .clamp(0, image_w - 2)
        .unbind(-1)
    )
    i1, j1 = i0 + 1, j0 + 1

    w_i = i - i0.float()
    w_j = j - j0.float()
    weights = torch.stack(
        [(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
        dim=1,
    )

    indices_comb = torch.stack(
        [
            torch.stack([i0, j0], dim=1),
            torch.stack([i0, j1], dim=1),
            torch.stack([i1, j0], dim=1),
            torch.stack([i1, j1], dim=1),
        ],
        dim=1,
    )

    grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
    cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)

    for k in range(4):
        idx = indices_comb[:, k]
        w = weights[:, k].unsqueeze(-1)

        stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
        flat_idx = (idx * stride).sum(-1)

        grid.view(-1, C).scatter_add_(
            0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
        )
        cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)

    mask = cnt.squeeze(-1) > 0
    grid[mask] = grid[mask] / cnt[mask].repeat(1, C)

    return grid


def _texture_inpaint_smooth(
    texture: np.ndarray,
    mask: np.ndarray,
    vertices: np.ndarray,
    faces: np.ndarray,
    uv_map: np.ndarray,
) -> tuple[np.ndarray, np.ndarray]:
    """Perform texture inpainting using vertex-based color propagation."""
    image_h, image_w, C = texture.shape
    N = vertices.shape[0]

    # Initialize vertex data structures
    vtx_mask = np.zeros(N, dtype=np.float32)
    vtx_colors = np.zeros((N, C), dtype=np.float32)
    unprocessed = []
    adjacency = [[] for _ in range(N)]

    # Build adjacency graph and initial color assignment
    for face_idx in range(faces.shape[0]):
        for k in range(3):
            uv_idx_k = faces[face_idx, k]
            v_idx = faces[face_idx, k]

            # Convert UV to pixel coordinates with boundary clamping
            u = np.clip(
                int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
            )
            v = np.clip(
                int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
                0,
                image_h - 1,
            )

            if mask[v, u]:
                vtx_mask[v_idx] = 1.0
                vtx_colors[v_idx] = texture[v, u]
            elif v_idx not in unprocessed:
                unprocessed.append(v_idx)

            # Build undirected adjacency graph
            neighbor = faces[face_idx, (k + 1) % 3]
            if neighbor not in adjacency[v_idx]:
                adjacency[v_idx].append(neighbor)
            if v_idx not in adjacency[neighbor]:
                adjacency[neighbor].append(v_idx)

    # Color propagation with dynamic stopping
    remaining_iters, prev_count = 2, 0
    while remaining_iters > 0:
        current_unprocessed = []

        for v_idx in unprocessed:
            valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
            if not valid_neighbors:
                current_unprocessed.append(v_idx)
                continue

            # Calculate inverse square distance weights
            neighbors_pos = vertices[valid_neighbors]
            dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
            weights = 1 / np.maximum(dist_sq, 1e-8)

            vtx_colors[v_idx] = np.average(
                vtx_colors[valid_neighbors], weights=weights, axis=0
            )
            vtx_mask[v_idx] = 1.0

        # Update iteration control
        if len(current_unprocessed) == prev_count:
            remaining_iters -= 1
        else:
            remaining_iters = min(remaining_iters + 1, 2)
        prev_count = len(current_unprocessed)
        unprocessed = current_unprocessed

    # Generate output texture
    inpainted_texture, updated_mask = texture.copy(), mask.copy()
    for face_idx in range(faces.shape[0]):
        for k in range(3):
            v_idx = faces[face_idx, k]
            if not vtx_mask[v_idx]:
                continue

            # UV coordinate conversion
            uv_idx_k = faces[face_idx, k]
            u = np.clip(
                int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
            )
            v = np.clip(
                int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
                0,
                image_h - 1,
            )

            inpainted_texture[v, u] = vtx_colors[v_idx]
            updated_mask[v, u] = 255

    return inpainted_texture, updated_mask


class TextureBacker:
    """Texture baking pipeline for multi-view projection and fusion."""

    def __init__(
        self,
        camera_params: CameraSetting,
        view_weights: list[float],
        render_wh: tuple[int, int] = (2048, 2048),
        texture_wh: tuple[int, int] = (2048, 2048),
        bake_angle_thresh: int = 75,
        mask_thresh: float = 0.5,
    ):
        camera = init_kal_camera(camera_params)
        mv = camera.view_matrix()  # (n 4 4) world2cam
        p = camera.intrinsics.projection_matrix()
        # NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output.  # noqa
        p[:, 1, 1] = -p[:, 1, 1]
        renderer = DiffrastRender(
            p_matrix=p,
            mv_matrix=mv,
            resolution_hw=camera_params.resolution_hw,
            context=dr.RasterizeCudaContext(),
            mask_thresh=mask_thresh,
            grad_db=False,
            device=camera_params.device,
            antialias_mask=True,
        )
        self.camera = camera
        self.renderer = renderer
        self.view_weights = view_weights
        self.device = camera_params.device
        self.render_wh = render_wh
        self.texture_wh = texture_wh

        self.bake_angle_thresh = bake_angle_thresh
        self.bake_unreliable_kernel_size = int(
            (2 / 512) * max(self.render_wh[0], self.render_wh[1])
        )

    def load_mesh(self, mesh: trimesh.Trimesh) -> trimesh.Trimesh:
        mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
        self.scale, self.center = scale, center

        vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
        uvs[:, 1] = 1 - uvs[:, 1]
        mesh.vertices = mesh.vertices[vmapping]
        mesh.faces = indices
        mesh.visual.uv = uvs

        return mesh

    def get_mesh_np_attrs(
        self,
        scale: float = None,
        center: np.ndarray = None,
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        vertices = self.vertices.cpu().numpy()
        faces = self.faces.cpu().numpy()
        uv_map = self.uv_map.cpu().numpy()
        uv_map[:, 1] = 1.0 - uv_map[:, 1]

        if scale is not None:
            vertices = vertices / scale
        if center is not None:
            vertices = vertices + center

        return vertices, faces, uv_map

    def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
        depth_image_np = depth_image.cpu().numpy()
        depth_image_np = (depth_image_np * 255).astype(np.uint8)
        depth_edges = cv2.Canny(depth_image_np, 30, 80)
        sketch_image = (
            torch.from_numpy(depth_edges).to(depth_image.device).float() / 255
        )
        sketch_image = sketch_image.unsqueeze(-1)

        return sketch_image

    def compute_enhanced_viewnormal(
        self, mv_mtx: torch.Tensor, vertices: torch.Tensor, faces: torch.Tensor
    ) -> torch.Tensor:
        rast, _ = self.renderer.compute_dr_raster(vertices, faces)
        rendered_view_normals = []
        for idx in range(len(mv_mtx)):
            pos_cam = transform_vertices(mv_mtx[idx], vertices, keepdim=True)
            pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
            v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3))
            face_norm = F.normalize(
                torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1
            )
            vertex_norm = (
                torch.from_numpy(
                    trimesh.geometry.mean_vertex_normals(
                        len(pos_cam), faces.cpu(), face_norm.cpu()
                    )
                )
                .to(vertices.device)
                .contiguous()
            )
            im_base_normals, _ = dr.interpolate(
                vertex_norm[None, ...].float(),
                rast[idx : idx + 1],
                faces.to(torch.int32),
            )
            rendered_view_normals.append(im_base_normals)

        rendered_view_normals = torch.cat(rendered_view_normals, dim=0)

        return rendered_view_normals

    def back_project(
        self, image, vis_mask, depth, normal, uv
    ) -> tuple[torch.Tensor, torch.Tensor]:
        image = np.array(image)
        image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
        if image.ndim == 2:
            image = image.unsqueeze(-1)
        image = image / 255

        depth_inv = (1.0 - depth) * vis_mask
        sketch_image = self._render_depth_edges(depth_inv)

        cos = F.cosine_similarity(
            torch.tensor([[0, 0, 1]], device=self.device),
            normal.view(-1, 3),
        ).view_as(normal[..., :1])
        cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0

        k = self.bake_unreliable_kernel_size * 2 + 1
        kernel = torch.ones((1, 1, k, k), device=self.device)

        vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
        vis_mask = F.conv2d(
            1.0 - vis_mask,
            kernel,
            padding=k // 2,
        )
        vis_mask = 1.0 - (vis_mask > 0).float()
        vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)

        sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
        sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
        sketch_image = (sketch_image > 0).float()
        sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
        vis_mask = vis_mask * (sketch_image < 0.5)

        cos[vis_mask == 0] = 0
        valid_pixels = (vis_mask != 0).view(-1)

        return (
            self._scatter_texture(uv, image, valid_pixels),
            self._scatter_texture(uv, cos, valid_pixels),
        )

    def _scatter_texture(self, uv, data, mask):
        def __filter_data(data, mask):
            return data.view(-1, data.shape[-1])[mask]

        return _bilinear_interpolation_scattering(
            self.texture_wh[1],
            self.texture_wh[0],
            __filter_data(uv, mask)[..., [1, 0]],
            __filter_data(data, mask),
        )

    @torch.no_grad()
    def fast_bake_texture(
        self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
    ) -> tuple[torch.Tensor, torch.Tensor]:
        channel = textures[0].shape[-1]
        texture_merge = torch.zeros(self.texture_wh + [channel]).to(
            self.device
        )
        trust_map_merge = torch.zeros(self.texture_wh + [1]).to(self.device)
        for texture, cos_map in zip(textures, confidence_maps):
            view_sum = (cos_map > 0).sum()
            painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
            if painted_sum / view_sum > 0.99:
                continue
            texture_merge += texture * cos_map
            trust_map_merge += cos_map
        texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)

        return texture_merge, trust_map_merge > 1e-8

    def uv_inpaint(
        self, texture: np.ndarray, mask: np.ndarray
    ) -> np.ndarray:
        vertices, faces, uv_map = self.get_mesh_np_attrs()

        texture, mask = _texture_inpaint_smooth(
            texture, mask, vertices, faces, uv_map
        )
        texture = texture.clip(0, 1)
        texture = cv2.inpaint(
            (texture * 255).astype(np.uint8),
            255 - mask,
            3,
            cv2.INPAINT_NS,
        )

        return texture

    @spaces.GPU
    def cuda_forward(
        self,
        colors: list[Image.Image],
        mesh: trimesh.Trimesh,
    ) -> trimesh.Trimesh:
        self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
        self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
        self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
        rendered_depth, masks = self.renderer.render_depth(
            self.vertices, self.faces
        )
        norm_deps = self.renderer.normalize_map_by_mask(rendered_depth, masks)
        render_uvs, _ = self.renderer.render_uv(
            self.vertices, self.faces, self.uv_map
        )
        view_normals = self.compute_enhanced_viewnormal(
            self.renderer.mv_mtx, self.vertices, self.faces
        )

        textures, weighted_cos_maps = [], []
        for color, mask, dep, normal, uv, weight in zip(
            colors,
            masks,
            norm_deps,
            view_normals,
            render_uvs,
            self.view_weights,
        ):
            texture, cos_map = self.back_project(color, mask, dep, normal, uv)
            textures.append(texture)
            weighted_cos_maps.append(weight * (cos_map**4))

        texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)

        texture_np = texture.cpu().numpy()
        mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
        
        return texture_np, mask_np

    def __call__(
        self,
        colors: list[Image.Image],
        mesh: trimesh.Trimesh,
        output_path: str,
    ) -> trimesh.Trimesh:
        mesh = self.load_mesh(mesh)
        texture_np, mask_np = self.cuda_forward(colors, mesh)
        
        texture_np = self.uv_inpaint(texture_np, mask_np)
        texture_np = post_process_texture(texture_np)
        vertices, faces, uv_map = self.get_mesh_np_attrs(
            self.scale, self.center
        )
        textured_mesh = save_mesh_with_mtl(
            vertices, faces, uv_map, texture_np, output_path
        )

        return textured_mesh


def parse_args():
    parser = argparse.ArgumentParser(description="Backproject texture")
    parser.add_argument(
        "--color_path",
        type=str,
        help="Multiview color image in 6x512x512 file path",
    )
    parser.add_argument(
        "--mesh_path",
        type=str,
        help="Mesh path, .obj, .glb or .ply",
    )
    parser.add_argument(
        "--output_path",
        type=str,
        help="Output mesh path with suffix",
    )
    parser.add_argument(
        "--num_images", type=int, default=6, help="Number of images to render."
    )
    parser.add_argument(
        "--elevation",
        nargs=2,
        type=float,
        default=[20.0, -10.0],
        help="Elevation angles for the camera (default: [20.0, -10.0])",
    )
    parser.add_argument(
        "--distance",
        type=float,
        default=5,
        help="Camera distance (default: 5)",
    )
    parser.add_argument(
        "--resolution_hw",
        type=int,
        nargs=2,
        default=(2048, 2048),
        help="Resolution of the output images (default: (2048, 2048))",
    )
    parser.add_argument(
        "--fov",
        type=float,
        default=30,
        help="Field of view in degrees (default: 30)",
    )
    parser.add_argument(
        "--device",
        type=str,
        choices=["cpu", "cuda"],
        default="cuda",
        help="Device to run on (default: `cuda`)",
    )
    parser.add_argument(
        "--skip_fix_mesh", action="store_true", help="Fix mesh geometry."
    )
    parser.add_argument(
        "--texture_wh",
        nargs=2,
        type=int,
        default=[2048, 2048],
        help="Texture resolution width and height",
    )
    parser.add_argument(
        "--mesh_sipmlify_ratio",
        type=float,
        default=0.9,
        help="Mesh simplification ratio (default: 0.9)",
    )
    parser.add_argument(
        "--delight", action="store_true", help="Use delighting model."
    )
    args = parser.parse_args()

    return args


def entrypoint(
    delight_model: DelightingModel = None,
    imagesr_model: ImageRealESRGAN = None,
    **kwargs,
) -> trimesh.Trimesh:
    args = parse_args()
    for k, v in kwargs.items():
        if hasattr(args, k) and v is not None:
            setattr(args, k, v)

    # Setup camera parameters.
    camera_params = CameraSetting(
        num_images=args.num_images,
        elevation=args.elevation,
        distance=args.distance,
        resolution_hw=args.resolution_hw,
        fov=math.radians(args.fov),
        device=args.device,
    )
    view_weights = [1, 0.1, 0.02, 0.1, 1, 0.02]

    color_grid = Image.open(args.color_path)
    if args.delight:
        if delight_model is None:
            delight_model = DelightingModel(
                model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0"  # noqa
            )
        save_dir = os.path.dirname(args.output_path)
        os.makedirs(save_dir, exist_ok=True)
        color_grid = delight_model(color_grid)
        color_grid.save(f"{save_dir}/color_grid_delight.png")

    multiviews = get_images_from_grid(color_grid, img_size=512)

    # Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
    if imagesr_model is None:
        imagesr_model = ImageRealESRGAN(outscale=4)
    multiviews = [imagesr_model(img) for img in multiviews]
    multiviews = [img.convert("RGB") for img in multiviews]
    mesh = trimesh.load(args.mesh_path)
    if isinstance(mesh, trimesh.Scene):
        mesh = mesh.dump(concatenate=True)

    if not args.skip_fix_mesh:
        mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
        mesh_fixer = MeshFixer(mesh.vertices, mesh.faces, args.device)
        mesh.vertices, mesh.faces = mesh_fixer(
            filter_ratio=args.mesh_sipmlify_ratio,
            max_hole_size=0.04,
            resolution=1024,
            num_views=1000,
            norm_mesh_ratio=0.5,
        )
        # Restore scale.
        mesh.vertices = mesh.vertices / scale
        mesh.vertices = mesh.vertices + center

    # Baking texture to mesh.
    texture_backer = TextureBacker(
        camera_params=camera_params,
        view_weights=view_weights,
        render_wh=camera_params.resolution_hw,
        texture_wh=args.texture_wh,
    )

    textured_mesh = texture_backer(multiviews, mesh, args.output_path)

    return textured_mesh


if __name__ == "__main__":
    entrypoint()