Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,951 Bytes
55ed985 146eff7 55ed985 146eff7 55ed985 146eff7 55ed985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import argparse
import json
import logging
import math
import os
from collections import defaultdict
from typing import List, Union
import cv2
import imageio
import numpy as np
import nvdiffrast.torch as dr
import torch
from PIL import Image
from tqdm import tqdm
from asset3d_gen.data.utils import (
CameraSetting,
DiffrastRender,
RenderItems,
as_list,
calc_vertex_normals,
import_kaolin_mesh,
init_kal_camera,
normalize_vertices_array,
render_pbr,
save_images,
)
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
os.environ["TORCH_EXTENSIONS_DIR"] = os.path.expanduser(
"~/.cache/torch_extensions"
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
def create_gif_from_images(images, output_path, fps=10):
pil_images = []
for image in images:
image = image.clip(min=0, max=1)
image = (255.0 * image).astype(np.uint8)
image = Image.fromarray(image, mode="RGBA")
pil_images.append(image.convert("RGB"))
duration = 1000 // fps
pil_images[0].save(
output_path,
save_all=True,
append_images=pil_images[1:],
duration=duration,
loop=0,
)
logger.info(f"GIF saved to {output_path}")
def create_mp4_from_images(images, output_path, fps=10, prompt=None):
font = cv2.FONT_HERSHEY_SIMPLEX # 字体样式
font_scale = 0.5 # 字体大小
font_thickness = 1 # 字体粗细
color = (255, 255, 255) # 文字颜色(白色)
position = (20, 25) # 左上角坐标 (x, y)
with imageio.get_writer(output_path, fps=fps) as writer:
for image in images:
image = image.clip(min=0, max=1)
image = (255.0 * image).astype(np.uint8)
image = image[..., :3]
if prompt is not None:
cv2.putText(
image,
prompt,
position,
font,
font_scale,
color,
font_thickness,
)
writer.append_data(image)
logger.info(f"MP4 video saved to {output_path}")
class ImageRender(object):
def __init__(
self,
render_items: list[RenderItems],
camera_params: CameraSetting,
recompute_vtx_normal: bool = True,
device: str = "cuda",
with_mtl: bool = False,
gen_color_gif: bool = False,
gen_color_mp4: bool = False,
gen_viewnormal_mp4: bool = False,
gen_glonormal_mp4: bool = False,
no_index_file: bool = False,
light_factor: float = 1.0,
) -> None:
camera_params.device = device
camera = init_kal_camera(camera_params)
self.camera = camera
# Setup MVP matrix and renderer.
mv = camera.view_matrix() # (n 4 4) world2cam
p = camera.intrinsics.projection_matrix()
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
p[:, 1, 1] = -p[:, 1, 1]
# mvp = torch.bmm(p, mv) # camera.view_projection_matrix()
self.mv = mv
self.p = p
renderer = DiffrastRender(
p_matrix=p,
mv_matrix=mv,
resolution_hw=camera_params.resolution_hw,
context=dr.RasterizeCudaContext(),
mask_thresh=0.5,
grad_db=False,
device=camera_params.device,
antialias_mask=True,
)
self.renderer = renderer
self.recompute_vtx_normal = recompute_vtx_normal
self.render_items = render_items
self.device = device
self.with_mtl = with_mtl
self.gen_color_gif = gen_color_gif
self.gen_color_mp4 = gen_color_mp4
self.gen_viewnormal_mp4 = gen_viewnormal_mp4
self.gen_glonormal_mp4 = gen_glonormal_mp4
self.light_factor = light_factor
self.no_index_file = no_index_file
def render_mesh(
self,
mesh_path: Union[str, List[str]],
output_root: str,
uuid: Union[str, List[str]] = None,
prompts: List[str] = None,
) -> None:
mesh_path = as_list(mesh_path)
if uuid is None:
uuid = [os.path.basename(p).split(".")[0] for p in mesh_path]
uuid = as_list(uuid)
assert len(mesh_path) == len(uuid)
os.makedirs(output_root, exist_ok=True)
meta_info = dict()
for idx, (path, uid) in tqdm(
enumerate(zip(mesh_path, uuid)), total=len(mesh_path)
):
output_dir = os.path.join(output_root, uid)
os.makedirs(output_dir, exist_ok=True)
prompt = prompts[idx] if prompts else None
data_dict = self(path, output_dir, prompt)
meta_info[uid] = data_dict
if self.no_index_file:
return
index_file = os.path.join(output_root, "index.json")
with open(index_file, "w") as fout:
json.dump(meta_info, fout)
logger.info(f"Rendering meta info logged in {index_file}")
def __call__(
self, mesh_path: str, output_dir: str, prompt: str = None
) -> dict[str, str]:
try:
mesh = import_kaolin_mesh(mesh_path, self.with_mtl)
except Exception as e:
logger.error(f"[ERROR MESH LOAD]: {e}, skip {mesh_path}")
return
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
if self.recompute_vtx_normal:
mesh.vertex_normals = calc_vertex_normals(
mesh.vertices, mesh.faces
)
mesh = mesh.to(self.device)
vertices, faces, vertex_normals = (
mesh.vertices,
mesh.faces,
mesh.vertex_normals,
)
# Perform rendering.
data_dict = defaultdict(list)
if RenderItems.ALPHA.value in self.render_items:
masks, _ = self.renderer.render_rast_alpha(vertices, faces)
render_paths = save_images(
masks, f"{output_dir}/{RenderItems.ALPHA}"
)
data_dict[RenderItems.ALPHA.value] = render_paths
if RenderItems.GLOBAL_NORMAL.value in self.render_items:
rendered_normals, masks = self.renderer.render_global_normal(
vertices, faces, vertex_normals
)
if self.gen_glonormal_mp4:
if isinstance(rendered_normals, torch.Tensor):
rendered_normals = rendered_normals.detach().cpu().numpy()
create_mp4_from_images(
rendered_normals,
output_path=f"{output_dir}/normal.mp4",
fps=15,
prompt=prompt,
)
else:
render_paths = save_images(
rendered_normals,
f"{output_dir}/{RenderItems.GLOBAL_NORMAL}",
cvt_color=cv2.COLOR_BGR2RGB,
)
data_dict[RenderItems.GLOBAL_NORMAL.value] = render_paths
if RenderItems.VIEW_NORMAL.value in self.render_items:
assert (
RenderItems.GLOBAL_NORMAL in self.render_items
), f"Must render global normal firstly, got render_items: {self.render_items}." # noqa
rendered_view_normals = self.renderer.transform_normal(
rendered_normals, self.mv, masks, to_view=True
)
# rendered_inv_view_normals = renderer.transform_normal(rendered_view_normals, torch.linalg.inv(mv), masks, to_view=False) # noqa
if self.gen_viewnormal_mp4:
create_mp4_from_images(
rendered_view_normals,
output_path=f"{output_dir}/view_normal.mp4",
fps=15,
prompt=prompt,
)
else:
render_paths = save_images(
rendered_view_normals,
f"{output_dir}/{RenderItems.VIEW_NORMAL}",
cvt_color=cv2.COLOR_BGR2RGB,
)
data_dict[RenderItems.VIEW_NORMAL.value] = render_paths
if RenderItems.POSITION_MAP.value in self.render_items:
rendered_position, masks = self.renderer.render_position(
vertices, faces
)
norm_position = self.renderer.normalize_map_by_mask(
rendered_position, masks
)
render_paths = save_images(
norm_position,
f"{output_dir}/{RenderItems.POSITION_MAP}",
cvt_color=cv2.COLOR_BGR2RGB,
)
data_dict[RenderItems.POSITION_MAP.value] = render_paths
if RenderItems.DEPTH.value in self.render_items:
rendered_depth, masks = self.renderer.render_depth(vertices, faces)
norm_depth = self.renderer.normalize_map_by_mask(
rendered_depth, masks
)
render_paths = save_images(
norm_depth,
f"{output_dir}/{RenderItems.DEPTH}",
)
data_dict[RenderItems.DEPTH.value] = render_paths
render_paths = save_images(
rendered_depth,
f"{output_dir}/{RenderItems.DEPTH}_exr",
to_uint8=False,
format=".exr",
)
data_dict[f"{RenderItems.DEPTH.value}_exr"] = render_paths
if RenderItems.IMAGE.value in self.render_items:
images = []
albedos = []
diffuses = []
masks, _ = self.renderer.render_rast_alpha(vertices, faces)
try:
for idx, cam in enumerate(self.camera):
image, albedo, diffuse, _ = render_pbr(
mesh, cam, light_factor=self.light_factor
)
image = torch.cat([image[0], masks[idx]], axis=-1)
images.append(image.detach().cpu().numpy())
if RenderItems.ALBEDO.value in self.render_items:
albedo = torch.cat([albedo[0], masks[idx]], axis=-1)
albedos.append(albedo.detach().cpu().numpy())
if RenderItems.DIFFUSE.value in self.render_items:
diffuse = torch.cat([diffuse[0], masks[idx]], axis=-1)
diffuses.append(diffuse.detach().cpu().numpy())
except Exception as e:
logger.error(f"[ERROR pbr render]: {e}, skip {mesh_path}")
return
if self.gen_color_gif:
create_gif_from_images(
images,
output_path=f"{output_dir}/color.gif",
fps=15,
)
if self.gen_color_mp4:
create_mp4_from_images(
images,
output_path=f"{output_dir}/color.mp4",
fps=15,
prompt=prompt,
)
if self.gen_color_mp4 or self.gen_color_gif:
return data_dict
render_paths = save_images(
images,
f"{output_dir}/{RenderItems.IMAGE}",
cvt_color=cv2.COLOR_BGRA2RGBA,
)
data_dict[RenderItems.IMAGE.value] = render_paths
render_paths = save_images(
albedos,
f"{output_dir}/{RenderItems.ALBEDO}",
cvt_color=cv2.COLOR_BGRA2RGBA,
)
data_dict[RenderItems.ALBEDO.value] = render_paths
render_paths = save_images(
diffuses,
f"{output_dir}/{RenderItems.DIFFUSE}",
cvt_color=cv2.COLOR_BGRA2RGBA,
)
data_dict[RenderItems.DIFFUSE.value] = render_paths
data_dict["status"] = "success"
logger.info(f"Finish rendering in {output_dir}")
return data_dict
def parse_args():
parser = argparse.ArgumentParser(description="Render settings")
parser.add_argument(
"--mesh_path",
type=str,
nargs="+",
help="Paths to the mesh files for rendering.",
)
parser.add_argument(
"--output_root",
type=str,
help="Root directory for output",
)
parser.add_argument(
"--uuid",
type=str,
nargs="+",
default=None,
help="uuid for rendering saving.",
)
parser.add_argument(
"--num_images", type=int, default=6, help="Number of images to render."
)
parser.add_argument(
"--elevation",
type=float,
nargs="+",
default=[20.0, -10.0],
help="Elevation angles for the camera (default: [20.0, -10.0])",
)
parser.add_argument(
"--distance",
type=float,
default=5,
help="Camera distance (default: 5)",
)
parser.add_argument(
"--resolution_hw",
type=int,
nargs=2,
default=(512, 512),
help="Resolution of the output images (default: (512, 512))",
)
parser.add_argument(
"--fov",
type=float,
default=30,
help="Field of view in degrees (default: 30)",
)
parser.add_argument(
"--pbr_light_factor",
type=float,
default=1.0,
help="Light factor for mesh PBR rendering (default: 2.)",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda"],
default="cuda",
help="Device to run on (default: 'cuda')",
)
parser.add_argument(
"--with_mtl",
action="store_true",
help="Whether to render with mesh material.",
)
parser.add_argument(
"--gen_color_gif",
action="store_true",
help="Whether to generate color .gif rendering file.",
)
parser.add_argument(
"--gen_color_mp4",
action="store_true",
help="Whether to generate color .mp4 rendering file.",
)
parser.add_argument(
"--gen_viewnormal_mp4",
action="store_true",
help="Whether to generate view normal .mp4 rendering file.",
)
parser.add_argument(
"--gen_glonormal_mp4",
action="store_true",
help="Whether to generate global normal .mp4 rendering file.",
)
parser.add_argument(
"--prompts",
type=str,
nargs="+",
default=None,
help="Text prompts for the rendering.",
)
args = parser.parse_args()
if args.uuid is None and args.mesh_path is not None:
args.uuid = []
for path in args.mesh_path:
uuid = os.path.basename(path).split(".")[0]
args.uuid.append(uuid)
return args
def entrypoint(**kwargs) -> None:
args = parse_args()
for k, v in kwargs.items():
if hasattr(args, k) and v is not None:
setattr(args, k, v)
camera_settings = CameraSetting(
num_images=args.num_images,
elevation=args.elevation,
distance=args.distance,
resolution_hw=args.resolution_hw,
fov=math.radians(args.fov),
device=args.device,
)
render_items = [
RenderItems.ALPHA.value,
RenderItems.GLOBAL_NORMAL.value,
RenderItems.VIEW_NORMAL.value,
RenderItems.POSITION_MAP.value,
RenderItems.IMAGE.value,
RenderItems.DEPTH.value,
# RenderItems.ALBEDO.value,
# RenderItems.DIFFUSE.value,
]
gen_video = (
args.gen_color_gif
or args.gen_color_mp4
or args.gen_viewnormal_mp4
or args.gen_glonormal_mp4
)
if gen_video:
render_items = []
if args.gen_color_gif or args.gen_color_mp4:
render_items.append(RenderItems.IMAGE.value)
if args.gen_glonormal_mp4:
render_items.append(RenderItems.GLOBAL_NORMAL.value)
if args.gen_viewnormal_mp4:
render_items.append(RenderItems.VIEW_NORMAL.value)
if RenderItems.GLOBAL_NORMAL.value not in render_items:
render_items.append(RenderItems.GLOBAL_NORMAL.value)
image_render = ImageRender(
render_items=render_items,
camera_params=camera_settings,
with_mtl=args.with_mtl,
gen_color_gif=args.gen_color_gif,
gen_color_mp4=args.gen_color_mp4,
gen_viewnormal_mp4=args.gen_viewnormal_mp4,
gen_glonormal_mp4=args.gen_glonormal_mp4,
light_factor=args.pbr_light_factor,
no_index_file=gen_video,
)
image_render.render_mesh(
mesh_path=args.mesh_path,
output_root=args.output_root,
uuid=args.uuid,
prompts=args.prompts,
)
return
if __name__ == "__main__":
entrypoint()
|