File size: 14,437 Bytes
55ed985
 
146eff7
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146eff7
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import logging
from typing import Tuple, Union
import spaces
import igraph
import numpy as np
import pyvista as pv
import torch
import utils3d
from pymeshfix import _meshfix
from tqdm import tqdm

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


__all__ = ["MeshFixer"]


def radical_inverse(base, n):
    val = 0
    inv_base = 1.0 / base
    inv_base_n = inv_base
    while n > 0:
        digit = n % base
        val += digit * inv_base_n
        n //= base
        inv_base_n *= inv_base
    return val


def halton_sequence(dim, n):
    PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
    return [radical_inverse(PRIMES[dim], n) for dim in range(dim)]


def hammersley_sequence(dim, n, num_samples):
    return [n / num_samples] + halton_sequence(dim - 1, n)


def sphere_hammersley_sequence(n, num_samples, offset=(0, 0), remap=False):
    """Generate a point on a unit sphere using the Hammersley sequence.

    Args:
        n (int): The index of the sample.
        num_samples (int): The total number of samples.
        offset (tuple, optional): Offset for the u and v coordinates.
        remap (bool, optional): Whether to remap the u coordinate.

    Returns:
        list: A list containing the spherical coordinates [phi, theta].
    """
    u, v = hammersley_sequence(2, n, num_samples)
    u += offset[0] / num_samples
    v += offset[1]

    if remap:
        u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3

    theta = np.arccos(1 - 2 * u) - np.pi / 2
    phi = v * 2 * np.pi
    return [phi, theta]


class MeshFixer(object):
    """Reduce and postprocess 3D meshes, simplifying and filling holes."""

    def __init__(
        self,
        vertices: Union[torch.Tensor, np.ndarray],
        faces: Union[torch.Tensor, np.ndarray],
        device: str = "cuda",
    ) -> None:
        self.device = device
        self.vertices = (
            torch.tensor(vertices, device=device)
            if isinstance(vertices, np.ndarray)
            else vertices.to(device)
        )
        self.faces = (
            torch.tensor(faces.astype(np.int32), device=device)
            if isinstance(faces, np.ndarray)
            else faces.to(device)
        )

    @staticmethod
    def log_mesh_changes(method):
        def wrapper(self, *args, **kwargs):
            logger.info(
                f"Before {method.__name__}: {self.vertices.shape[0]} vertices, {self.faces.shape[0]} faces"  # noqa
            )
            result = method(self, *args, **kwargs)
            logger.info(
                f"After {method.__name__}: {self.vertices.shape[0]} vertices, {self.faces.shape[0]} faces"  # noqa
            )
            return result

        return wrapper

    @log_mesh_changes
    def fill_holes(
        self,
        max_hole_size: float,
        max_hole_nbe: int,
        resolution: int,
        num_views: int,
        norm_mesh_ratio: float = 1.0,
    ) -> None:
        self.vertices = self.vertices * norm_mesh_ratio
        vertices, self.faces = self._fill_holes(
            self.vertices,
            self.faces,
            max_hole_size,
            max_hole_nbe,
            resolution,
            num_views,
        )
        self.vertices = vertices / norm_mesh_ratio

    @staticmethod
    @torch.no_grad()
    def _fill_holes(
        vertices: torch.Tensor,
        faces: torch.Tensor,
        max_hole_size: float,
        max_hole_nbe: int,
        resolution: int,
        num_views: int,
    ) -> Union[torch.Tensor, torch.Tensor]:
        yaws, pitchs = [], []
        for i in range(num_views):
            y, p = sphere_hammersley_sequence(i, num_views)
            yaws.append(y)
            pitchs.append(p)

        yaws, pitchs = torch.tensor(yaws).to(vertices), torch.tensor(
            pitchs
        ).to(vertices)
        radius, fov = 2.0, torch.deg2rad(torch.tensor(40)).to(vertices)
        projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3)

        views = []
        for yaw, pitch in zip(yaws, pitchs):
            orig = (
                torch.tensor(
                    [
                        torch.sin(yaw) * torch.cos(pitch),
                        torch.cos(yaw) * torch.cos(pitch),
                        torch.sin(pitch),
                    ]
                ).to(vertices)
                * radius
            )
            view = utils3d.torch.view_look_at(
                orig,
                torch.tensor([0, 0, 0]).to(vertices),
                torch.tensor([0, 0, 1]).to(vertices),
            )
            views.append(view)
        views = torch.stack(views, dim=0)

        # Rasterize the mesh
        visibility = torch.zeros(
            faces.shape[0], dtype=torch.int32, device=faces.device
        )
        rastctx = utils3d.torch.RastContext(backend="cuda")

        for i in tqdm(
            range(views.shape[0]), total=views.shape[0], desc="Rasterizing"
        ):
            view = views[i]
            buffers = utils3d.torch.rasterize_triangle_faces(
                rastctx,
                vertices[None],
                faces,
                resolution,
                resolution,
                view=view,
                projection=projection,
            )
            face_id = buffers["face_id"][0][buffers["mask"][0] > 0.95] - 1
            face_id = torch.unique(face_id).long()
            visibility[face_id] += 1

        # Normalize visibility by the number of views
        visibility = visibility.float() / num_views

        # Mincut: Identify outer and inner faces
        edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces)
        boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1)
        connected_components = utils3d.torch.compute_connected_components(
            faces, edges, face2edge
        )

        outer_face_indices = torch.zeros(
            faces.shape[0], dtype=torch.bool, device=faces.device
        )
        for i in range(len(connected_components)):
            outer_face_indices[connected_components[i]] = visibility[
                connected_components[i]
            ] > min(
                max(
                    visibility[connected_components[i]].quantile(0.75).item(),
                    0.25,
                ),
                0.5,
            )

        outer_face_indices = outer_face_indices.nonzero().reshape(-1)
        inner_face_indices = torch.nonzero(visibility == 0).reshape(-1)

        if inner_face_indices.shape[0] == 0:
            return vertices, faces

        # Construct dual graph (faces as nodes, edges as edges)
        dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(
            face2edge
        )
        dual_edge2edge = edges[dual_edge2edge]
        dual_edges_weights = torch.norm(
            vertices[dual_edge2edge[:, 0]] - vertices[dual_edge2edge[:, 1]],
            dim=1,
        )

        # Mincut: Construct main graph and solve the mincut problem
        g = igraph.Graph()
        g.add_vertices(faces.shape[0])
        g.add_edges(dual_edges.cpu().numpy())
        g.es["weight"] = dual_edges_weights.cpu().numpy()

        g.add_vertex("s")  # source
        g.add_vertex("t")  # target

        g.add_edges(
            [(f, "s") for f in inner_face_indices],
            attributes={
                "weight": torch.ones(
                    inner_face_indices.shape[0], dtype=torch.float32
                )
                .cpu()
                .numpy()
            },
        )
        g.add_edges(
            [(f, "t") for f in outer_face_indices],
            attributes={
                "weight": torch.ones(
                    outer_face_indices.shape[0], dtype=torch.float32
                )
                .cpu()
                .numpy()
            },
        )

        cut = g.mincut("s", "t", (np.array(g.es["weight"]) * 1000).tolist())
        remove_face_indices = torch.tensor(
            [v for v in cut.partition[0] if v < faces.shape[0]],
            dtype=torch.long,
            device=faces.device,
        )

        # Check if the cut is valid with each connected component
        to_remove_cc = utils3d.torch.compute_connected_components(
            faces[remove_face_indices]
        )
        valid_remove_cc = []
        cutting_edges = []
        for cc in to_remove_cc:
            # Check visibility median for connected component
            visibility_median = visibility[remove_face_indices[cc]].median()
            if visibility_median > 0.25:
                continue

            # Check if the cutting loop is small enough
            cc_edge_indices, cc_edges_degree = torch.unique(
                face2edge[remove_face_indices[cc]], return_counts=True
            )
            cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1]
            cc_new_boundary_edge_indices = cc_boundary_edge_indices[
                ~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)
            ]
            if len(cc_new_boundary_edge_indices) > 0:
                cc_new_boundary_edge_cc = (
                    utils3d.torch.compute_edge_connected_components(
                        edges[cc_new_boundary_edge_indices]
                    )
                )
                cc_new_boundary_edges_cc_center = [
                    vertices[edges[cc_new_boundary_edge_indices[edge_cc]]]
                    .mean(dim=1)
                    .mean(dim=0)
                    for edge_cc in cc_new_boundary_edge_cc
                ]
                cc_new_boundary_edges_cc_area = []
                for i, edge_cc in enumerate(cc_new_boundary_edge_cc):
                    _e1 = (
                        vertices[
                            edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]
                        ]
                        - cc_new_boundary_edges_cc_center[i]
                    )
                    _e2 = (
                        vertices[
                            edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]
                        ]
                        - cc_new_boundary_edges_cc_center[i]
                    )
                    cc_new_boundary_edges_cc_area.append(
                        torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum()
                        * 0.5
                    )
                cutting_edges.append(cc_new_boundary_edge_indices)
                if any(
                    [
                        _l > max_hole_size
                        for _l in cc_new_boundary_edges_cc_area
                    ]
                ):
                    continue

            valid_remove_cc.append(cc)

        if len(valid_remove_cc) > 0:
            remove_face_indices = remove_face_indices[
                torch.cat(valid_remove_cc)
            ]
            mask = torch.ones(
                faces.shape[0], dtype=torch.bool, device=faces.device
            )
            mask[remove_face_indices] = 0
            faces = faces[mask]
            faces, vertices = utils3d.torch.remove_unreferenced_vertices(
                faces, vertices
            )

            tqdm.write(f"Removed {(~mask).sum()} faces by mincut")
        else:
            tqdm.write(f"Removed 0 faces by mincut")

        # Fill small boundaries (holes)
        mesh = _meshfix.PyTMesh()
        mesh.load_array(vertices.cpu().numpy(), faces.cpu().numpy())
        mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True)

        _vertices, _faces = mesh.return_arrays()
        vertices = torch.tensor(_vertices).to(vertices)
        faces = torch.tensor(_faces).to(faces)

        return vertices, faces

    @property
    def vertices_np(self) -> np.ndarray:
        return self.vertices.cpu().numpy()

    @property
    def faces_np(self) -> np.ndarray:
        return self.faces.cpu().numpy()

    @log_mesh_changes
    def simplify(self, ratio: float) -> None:
        """Simplify the mesh using quadric edge collapse decimation.

        Args:
            ratio (float): Ratio of faces to filter out.
        """
        if ratio <= 0 or ratio >= 1:
            raise ValueError("Simplify ratio must be between 0 and 1.")

        # Convert to PyVista format for simplification
        mesh = pv.PolyData(
            self.vertices_np,
            np.hstack([np.full((self.faces.shape[0], 1), 3), self.faces_np]),
        )
        mesh = mesh.decimate(ratio, progress_bar=True)

        # Update vertices and faces
        self.vertices = torch.tensor(
            mesh.points, device=self.device, dtype=torch.float32
        )
        self.faces = torch.tensor(
            mesh.faces.reshape(-1, 4)[:, 1:],
            device=self.device,
            dtype=torch.int32,
        )

    @spaces.GPU
    def __call__(
        self,
        filter_ratio: float,
        max_hole_size: float,
        resolution: int,
        num_views: int,
        norm_mesh_ratio: float = 1.0,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Post-process the mesh by simplifying and filling holes.

        This method performs a two-step process:
        1. Simplifies mesh by reducing faces using quadric edge decimation.
        2. Fills holes by removing invisible faces, repairing small boundaries.

        Args:
            filter_ratio (float): Ratio of faces to simplify out.
                Must be in the range (0, 1).
            max_hole_size (float): Maximum area of a hole to fill. Connected
                components of holes larger than this size will not be repaired.
            resolution (int): Resolution of the rasterization buffer.
            num_views (int): Number of viewpoints to sample for rasterization.
            norm_mesh_ratio (float, optional): A scaling factor applied to the
                vertices of the mesh during processing.

        Returns:
            Tuple[np.ndarray, np.ndarray]:
                - vertices: Simplified and repaired vertex array of (V, 3).
                - faces: Simplified and repaired face array of (F, 3).
        """
        self.simplify(ratio=filter_ratio)
        self.fill_holes(
            max_hole_size=max_hole_size,
            max_hole_nbe=int(250 * np.sqrt(1 - filter_ratio)),
            resolution=resolution,
            num_views=num_views,
            norm_mesh_ratio=norm_mesh_ratio,
        )

        return self.vertices_np, self.faces_np