File size: 29,644 Bytes
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
import math
import os
import random
from glob import glob
from typing import List, Tuple, Union

import cv2
import kaolin as kal
import numpy as np
import nvdiffrast.torch as dr
import torch
import torch.nn.functional as F
from PIL import Image

try:
    from kolors.models.modeling_chatglm import ChatGLMModel
    from kolors.models.tokenization_chatglm import ChatGLMTokenizer
except ImportError:
    ChatGLMTokenizer = None
    ChatGLMModel = None
import logging
from dataclasses import dataclass, field
from enum import Enum

import trimesh
from kaolin.render.camera import Camera
from torch import nn

logger = logging.getLogger(__name__)


__all__ = [
    "center_points",
    "get_points_stat",
    "DiffrastRender",
    "compute_cam_pts_by_az_el",
    "compute_cam_pts_by_views",
    "save_images",
    "render_pbr",
    "load_llm_models",
    "prelabel_text_feature",
    "calc_vertex_normals",
    "normalize_vertices_array",
    "load_mesh_to_unit_cube",
    "as_list",
    "CameraSetting",
    "RenderItems",
    "import_kaolin_mesh",
    "save_mesh_with_mtl",
    "get_images_from_grid",
    "post_process_texture",
]


def get_points_stat(
    points: torch.FloatTensor, eps: float = 1e-6
) -> torch.FloatTensor:
    assert (
        len(points.shape) == 3
    ), f"Points have unexpected shape {points.shape}"

    vmin = points.min(dim=1, keepdim=True)[0]
    vmax = points.max(dim=1, keepdim=True)[0]
    pts_center = (vmin + vmax) / 2

    pts_dim = (vmax - vmin).max(dim=-1, keepdim=True)[0].clip(min=eps)

    return pts_center, pts_dim


def center_points(
    points: torch.FloatTensor, normalize: bool = False, eps: float = 1e-6
) -> torch.FloatTensor:
    vmid, den = get_points_stat(points)

    res = points - vmid

    if normalize:
        res = res / den

    return res


class DiffrastRender(object):
    """A class to handle differentiable rendering using nvdiffrast.

    This class provides methods to render position, depth, and normal maps
    with optional anti-aliasing and gradient disabling for rasterization.

    Attributes:
        p_mtx (torch.Tensor): Projection matrix.
        mv_mtx (torch.Tensor): Model-view matrix.
        mvp_mtx (torch.Tensor): Model-view-projection matrix, calculated as
            p_mtx @ mv_mtx if not provided.
        resolution_hw (Tuple[int, int]): Height and width of the rendering resolution.  # noqa
        _ctx (Union[dr.RasterizeCudaContext, dr.RasterizeGLContext]): Rasterization context.  # noqa
        mask_thresh (float): Threshold for mask creation.
        grad_db (bool): Whether to disable gradients during rasterization.
        antialias_mask (bool): Whether to apply anti-aliasing to the mask.
        device (str): Device used for rendering ('cuda' or 'cpu').

    Methods:
        _warmup(glctx): Warmup rasterization by rendering a simple triangle.
        compute_dr_raster(vertices, faces): Rasterizes the mesh and returns
            rasterized outputs and transformed vertices.
        transform_vertices(vertices, matrix): Transforms the vertices using
            the provided transformation matrix.
        normalize_map_by_mask_separately(map, mask): Normalizes each map in
            the batch separately using the mask.
        normalize_map_by_mask(map, mask): Normalizes the entire map using the
            mask, keeping the output in the range [0, 1].
        render_position(vertices, faces): Renders the position map and
            alpha mask from the given vertices and faces.
        render_depth(vertices, faces): Renders the depth map and alpha
            mask from the given vertices and faces.
        _compute_mask(rast, vertices_clip, faces): Computes the mask from the
            rasterization output.
        render_global_normal(vertices, faces, vertice_normals): Renders the
            normal map and alpha mask from the given vertices, faces, and
            vertex normals.
        transform_normal_to_view(normals, mat_w2c, masks): Transforms the normals
            to the view space using the world-to-camera matrix.
    """

    def __init__(
        self,
        p_matrix: torch.Tensor,
        mv_matrix: torch.Tensor,
        resolution_hw: Tuple[int, int],
        context: Union[dr.RasterizeCudaContext, dr.RasterizeGLContext] = None,
        mvp_matrix: torch.Tensor = None,
        mask_thresh: float = 0.5,
        grad_db: bool = False,
        antialias_mask: bool = True,
        align_coordinate: bool = True,
        device: str = "cuda",
    ) -> None:
        self.p_mtx = p_matrix
        self.mv_mtx = mv_matrix
        if mvp_matrix is None:
            self.mvp_mtx = torch.bmm(p_matrix, mv_matrix)

        self.resolution_hw = resolution_hw
        if context is None:
            context = dr.RasterizeCudaContext(device=device)
        self._ctx = context
        self.mask_thresh = mask_thresh
        self.grad_db = grad_db
        self.antialias_mask = antialias_mask
        self.align_coordinate = align_coordinate
        self.device = device
        # self._warmup(self._ctx)

    def _warmup(self, glctx):
        # Seem solved. https://github.com/NVlabs/nvdiffrast/issues/59
        def tensor(*args, **kwargs):
            return torch.tensor(*args, device=self.device, **kwargs)

        pos = tensor(
            [[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]],
            dtype=torch.float32,
        )
        tri = tensor([[0, 1, 2]], dtype=torch.int32)
        dr.rasterize(glctx, pos, tri, resolution=[256, 256])

    def compute_dr_raster(
        self,
        vertices: torch.Tensor,
        faces: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        vertices_clip = self.transform_vertices(vertices, matrix=self.mvp_mtx)
        rast, _ = dr.rasterize(
            self._ctx,
            vertices_clip,
            faces.int(),
            resolution=self.resolution_hw,
            grad_db=self.grad_db,
        )

        return rast, vertices_clip

    def transform_vertices(
        self,
        vertices: torch.Tensor,
        matrix: torch.Tensor,
    ) -> torch.Tensor:
        verts_ones = torch.ones((len(vertices), 1)).to(vertices)
        verts_homo = torch.cat([vertices, verts_ones], dim=-1)
        trans_vertices = torch.matmul(verts_homo, matrix.permute(0, 2, 1))

        return trans_vertices

    def normalize_map_by_mask_separately(
        self, map: torch.Tensor, mask: torch.Tensor
    ) -> torch.Tensor:
        # Normalize each map separately by mask, normalized map in [0, 1].
        normalized_maps = []
        for map_item, mask_item in zip(map, mask):
            normalized_map = self.normalize_map_by_mask(map_item, mask_item)
            normalized_maps.append(normalized_map)

        normalized_maps = torch.stack(normalized_maps, dim=0)

        return normalized_maps

    def normalize_map_by_mask(
        self, map: torch.Tensor, mask: torch.Tensor
    ) -> torch.Tensor:
        # Normalize all maps in total by mask, normalized map in [0, 1].
        foreground = (mask == 1).squeeze(dim=-1)
        foreground_elements = map[foreground]
        if len(foreground_elements) == 0:
            return map

        min_val, _ = foreground_elements.min(dim=0)
        max_val, _ = foreground_elements.max(dim=0)
        val_range = (max_val - min_val).clip(min=1e-6)

        normalized_map = (map - min_val) / val_range
        normalized_map = torch.lerp(
            torch.zeros_like(normalized_map), normalized_map, mask
        )
        normalized_map[normalized_map < 0] = 0

        return normalized_map

    def _compute_mask(
        self,
        rast: torch.Tensor,
        vertices_clip: torch.Tensor,
        faces: torch.Tensor,
    ) -> torch.Tensor:
        mask = (rast[..., 3:] > 0).float()
        mask = mask.clip(min=0, max=1)

        if self.antialias_mask is True:
            mask = dr.antialias(mask, rast, vertices_clip, faces)
        else:
            foreground = mask > self.mask_thresh
            mask[foreground] = 1
            mask[~foreground] = 0

        return mask

    def render_rast_alpha(
        self,
        vertices: torch.Tensor,
        faces: torch.Tensor,
    ):
        faces = faces.to(torch.int32)
        rast, vertices_clip = self.compute_dr_raster(vertices, faces)
        mask = self._compute_mask(rast, vertices_clip, faces)

        return mask, rast

    def render_position(
        self,
        vertices: torch.Tensor,
        faces: torch.Tensor,
    ) -> Union[torch.Tensor, torch.Tensor]:
        # Vertices in model coordinate system, real position coordinate number.
        faces = faces.to(torch.int32)
        mask, rast = self.render_rast_alpha(vertices, faces)

        vertices_model = vertices[None, ...].contiguous().float()
        position_map, _ = dr.interpolate(vertices_model, rast, faces)
        # Align with blender.
        if self.align_coordinate:
            position_map = position_map[..., [0, 2, 1]]
            position_map[..., 1] = -position_map[..., 1]

        position_map = torch.lerp(
            torch.zeros_like(position_map), position_map, mask
        )

        return position_map, mask

    def render_uv(
        self,
        vertices: torch.Tensor,
        faces: torch.Tensor,
        vtx_uv: torch.Tensor,
    ) -> Union[torch.Tensor, torch.Tensor]:
        faces = faces.to(torch.int32)
        mask, rast = self.render_rast_alpha(vertices, faces)
        uv_map, _ = dr.interpolate(vtx_uv, rast, faces)
        uv_map = torch.lerp(torch.zeros_like(uv_map), uv_map, mask)

        return uv_map, mask

    def render_depth(
        self,
        vertices: torch.Tensor,
        faces: torch.Tensor,
    ) -> Union[torch.Tensor, torch.Tensor]:
        # Vertices in model coordinate system, real depth coordinate number.
        faces = faces.to(torch.int32)
        mask, rast = self.render_rast_alpha(vertices, faces)

        vertices_camera = self.transform_vertices(vertices, matrix=self.mv_mtx)
        vertices_camera = vertices_camera[..., 2:3].contiguous().float()
        depth_map, _ = dr.interpolate(vertices_camera, rast, faces)
        # Change camera depth minus to positive.
        if self.align_coordinate:
            depth_map = -depth_map
        depth_map = torch.lerp(torch.zeros_like(depth_map), depth_map, mask)

        return depth_map, mask

    def render_global_normal(
        self,
        vertices: torch.Tensor,
        faces: torch.Tensor,
        vertice_normals: torch.Tensor,
    ) -> Union[torch.Tensor, torch.Tensor]:
        # NOTE: vertice_normals in [-1, 1],  return normal in [0, 1].
        # vertices / vertice_normals in model coordinate system.
        faces = faces.to(torch.int32)
        mask, rast = self.render_rast_alpha(vertices, faces)
        im_base_normals, _ = dr.interpolate(
            vertice_normals[None, ...].float(), rast, faces
        )

        if im_base_normals is not None:
            faces = faces.to(torch.int64)
            vertices_cam = self.transform_vertices(
                vertices, matrix=self.mv_mtx
            )
            face_vertices_ndc = kal.ops.mesh.index_vertices_by_faces(
                vertices_cam[..., :3], faces
            )
            face_normal_sign = kal.ops.mesh.face_normals(face_vertices_ndc)[
                ..., 2
            ]
            for idx in range(len(im_base_normals)):
                face_idx = (rast[idx, ..., -1].long() - 1).contiguous()
                im_normal_sign = torch.sign(face_normal_sign[idx, face_idx])
                im_normal_sign[face_idx == -1] = 0
                im_base_normals[idx] *= im_normal_sign.unsqueeze(-1)

        normal = (im_base_normals + 1) / 2
        normal = normal.clip(min=0, max=1)
        normal = torch.lerp(torch.zeros_like(normal), normal, mask)

        return normal, mask

    def transform_normal(
        self,
        normals: torch.Tensor,
        trans_matrix: torch.Tensor,
        masks: torch.Tensor,
        to_view: bool,
    ) -> torch.Tensor:
        # NOTE: input normals in [0, 1], output normals in [0, 1].
        normals = normals.clone()
        assert len(normals) == len(trans_matrix)

        if not to_view:
            # Flip the sign on the x-axis to match inv bae system for global transformation.  # noqa
            normals[..., 0] = 1 - normals[..., 0]

        normals = 2 * normals - 1
        b, h, w, c = normals.shape

        transformed_normals = []
        for normal, matrix in zip(normals, trans_matrix):
            # Transform normals using the transformation matrix (4x4).
            reshaped_normals = normal.view(-1, c)  # (h w 3) -> (hw 3)
            padded_vectors = torch.nn.functional.pad(
                reshaped_normals, pad=(0, 1), mode="constant", value=0.0
            )
            transformed_normal = torch.matmul(
                padded_vectors, matrix.transpose(0, 1)
            )[..., :3]

            # Normalize and clip the normals to [0, 1] range.
            transformed_normal = F.normalize(transformed_normal, p=2, dim=-1)
            transformed_normal = (transformed_normal + 1) / 2

            if to_view:
                # Flip the sign on the x-axis to match bae system for view transformation.  # noqa
                transformed_normal[..., 0] = 1 - transformed_normal[..., 0]

            transformed_normals.append(transformed_normal.view(h, w, c))

        transformed_normals = torch.stack(transformed_normals, dim=0)

        if masks is not None:
            transformed_normals = torch.lerp(
                torch.zeros_like(transformed_normals),
                transformed_normals,
                masks,
            )

        return transformed_normals


def az_el_to_points(
    azimuths: np.ndarray, elevations: np.ndarray
) -> np.ndarray:
    x = np.cos(azimuths) * np.cos(elevations)
    y = np.sin(azimuths) * np.cos(elevations)
    z = np.sin(elevations)

    return np.stack([x, y, z], axis=-1)


def compute_az_el_by_views(
    num_view: int, el: float
) -> Tuple[np.ndarray, np.ndarray]:
    azimuths = np.arange(num_view) / num_view * np.pi * 2
    elevations = np.deg2rad(np.array([el] * num_view))

    return azimuths, elevations


def compute_cam_pts_by_az_el(
    azs: np.ndarray,
    els: np.ndarray,
    distance: float,
    extra_pts: np.ndarray = None,
) -> np.ndarray:
    distances = np.array([distance for _ in range(len(azs))])
    cam_pts = az_el_to_points(azs, els) * distances[:, None]

    if extra_pts is not None:
        cam_pts = np.concatenate([cam_pts, extra_pts], axis=0)

    # Align coordinate system.
    cam_pts = cam_pts[:, [0, 2, 1]]  # xyz -> xzy
    cam_pts[..., 2] = -cam_pts[..., 2]

    return cam_pts


def compute_cam_pts_by_views(
    num_view: int, el: float, distance: float, extra_pts: np.ndarray = None
) -> torch.Tensor:
    """Computes object-center camera points for a given number of views.

    Args:
        num_view (int): The number of views (camera positions) to compute.
        el (float): The elevation angle in degrees.
        distance (float): The distance from the origin to the camera.
        extra_pts (np.ndarray): Extra camera points postion.

    Returns:
        torch.Tensor: A tensor containing the camera points for each view, with shape `(num_view, 3)`. # noqa
    """
    azimuths, elevations = compute_az_el_by_views(num_view, el)
    cam_pts = compute_cam_pts_by_az_el(
        azimuths, elevations, distance, extra_pts
    )

    return cam_pts


def save_images(
    images: Union[list[np.ndarray], list[torch.Tensor]],
    output_dir: str,
    cvt_color: str = None,
    format: str = ".png",
    to_uint8: bool = True,
    verbose: bool = False,
) -> List[str]:
    # NOTE: images in [0, 1]
    os.makedirs(output_dir, exist_ok=True)
    save_paths = []
    for idx, image in enumerate(images):
        if isinstance(image, torch.Tensor):
            image = image.detach().cpu().numpy()
        if to_uint8:
            image = image.clip(min=0, max=1)
            image = (255.0 * image).astype(np.uint8)
        if cvt_color is not None:
            image = cv2.cvtColor(image, cvt_color)
        save_path = os.path.join(output_dir, f"{idx:04d}{format}")
        save_paths.append(save_path)

        cv2.imwrite(save_path, image)

    if verbose:
        logger.info(f"Images saved in {output_dir}")

    return save_paths


def current_lighting(
    azimuths: List[float],
    elevations: List[float],
    light_factor: float = 1.0,
    device: str = "cuda",
):
    # azimuths, elevations in degress.
    directions = []
    for az, el in zip(azimuths, elevations):
        az, el = math.radians(az), math.radians(el)
        direction = kal.render.lighting.sg_direction_from_azimuth_elevation(
            az, el
        )
        directions.append(direction)
    directions = torch.cat(directions, dim=0)

    amplitude = torch.ones_like(directions) * light_factor
    light_condition = kal.render.lighting.SgLightingParameters(
        amplitude=amplitude,
        direction=directions,
        sharpness=3,
    ).to(device)

    # light_condition = kal.render.lighting.SgLightingParameters.from_sun(
    #     directions, strength=1, angle=90, color=None
    # ).to(device)

    return light_condition


def render_pbr(
    mesh,
    camera,
    device="cuda",
    cxt=None,
    custom_materials=None,
    light_factor=1.0,
):
    if cxt is None:
        cxt = dr.RasterizeCudaContext()

    light_condition = current_lighting(
        azimuths=[0, 90, 180, 270],
        elevations=[90, 60, 30, 20],
        light_factor=light_factor,
        device=device,
    )
    render_res = kal.render.easy_render.render_mesh(
        camera,
        mesh,
        lighting=light_condition,
        nvdiffrast_context=cxt,
        custom_materials=custom_materials,
    )

    image = render_res[kal.render.easy_render.RenderPass.render]
    image = image.clip(0, 1)

    albedo = render_res[kal.render.easy_render.RenderPass.albedo]
    albedo = albedo.clip(0, 1)

    diffuse = render_res[kal.render.easy_render.RenderPass.diffuse]
    diffuse = diffuse.clip(0, 1)

    normal = render_res[kal.render.easy_render.RenderPass.normals]
    normal = normal.clip(-1, 1)

    return image, albedo, diffuse, normal


def load_saved_normal(path: str) -> np.ndarray:
    image_paths = glob(os.path.join(path, "*.jpg"))
    images = []
    for path in sorted(image_paths):
        image = cv2.imread(path)
        image = image[..., ::-1]  # rgb -> bgr
        images.append(image)
    images = np.stack(images, axis=0)

    return images


def _move_to_target_device(data, device: str):
    if isinstance(data, dict):
        for key, value in data.items():
            data[key] = _move_to_target_device(value, device)
    elif isinstance(data, torch.Tensor):
        return data.to(device)

    return data


def _encode_prompt(
    prompt_batch,
    text_encoders,
    tokenizers,
    proportion_empty_prompts=0,
    is_train=True,
):
    prompt_embeds_list = []

    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                captions,
                padding="max_length",
                max_length=256,
                truncation=True,
                return_tensors="pt",
            ).to(text_encoder.device)

            output = text_encoder(
                input_ids=text_inputs.input_ids,
                attention_mask=text_inputs.attention_mask,
                position_ids=text_inputs.position_ids,
                output_hidden_states=True,
            )

            # We are only interested in the pooled output of the text encoder.
            prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
            pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
            bs_embed, seq_len, _ = prompt_embeds.shape
            prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
            prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)

    return prompt_embeds, pooled_prompt_embeds


def load_llm_models(pretrained_model_name_or_path: str, device: str):
    tokenizer = ChatGLMTokenizer.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
    )
    text_encoder = ChatGLMModel.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
    ).to(device)

    text_encoders = [
        text_encoder,
    ]
    tokenizers = [
        tokenizer,
    ]

    logger.info(f"Load model from {pretrained_model_name_or_path} done.")

    return tokenizers, text_encoders


def prelabel_text_feature(
    prompt_batch: List[str],
    output_dir: str,
    tokenizers: nn.Module,
    text_encoders: nn.Module,
) -> List[str]:
    os.makedirs(output_dir, exist_ok=True)

    # prompt_batch ["text..."]
    prompt_embeds, pooled_prompt_embeds = _encode_prompt(
        prompt_batch, text_encoders, tokenizers
    )

    prompt_embeds = _move_to_target_device(prompt_embeds, device="cpu")
    pooled_prompt_embeds = _move_to_target_device(
        pooled_prompt_embeds, device="cpu"
    )

    data_dict = dict(
        prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds
    )

    save_path = os.path.join(output_dir, "text_feat.pth")
    torch.save(data_dict, save_path)

    return save_path


def calc_face_normals(
    vertices: torch.Tensor,  # V,3 first vertex may be unreferenced
    faces: torch.Tensor,  # F,3 long, first face may be all zero
    normalize: bool = False,
) -> torch.Tensor:  # F,3
    full_vertices = vertices[faces]  # F,C=3,3
    v0, v1, v2 = full_vertices.unbind(dim=1)  # F,3
    face_normals = torch.cross(v1 - v0, v2 - v0, dim=1)  # F,3
    if normalize:
        face_normals = F.normalize(
            face_normals, eps=1e-6, dim=1
        )  # TODO inplace?
    return face_normals  # F,3


def calc_vertex_normals(
    vertices: torch.Tensor,  # V,3 first vertex may be unreferenced
    faces: torch.Tensor,  # F,3 long, first face may be all zero
    face_normals: torch.Tensor = None,  # F,3, not normalized
) -> torch.Tensor:  # F,3
    _F = faces.shape[0]

    if face_normals is None:
        face_normals = calc_face_normals(vertices, faces)

    vertex_normals = torch.zeros(
        (vertices.shape[0], 3, 3), dtype=vertices.dtype, device=vertices.device
    )  # V,C=3,3
    vertex_normals.scatter_add_(
        dim=0,
        index=faces[:, :, None].expand(_F, 3, 3),
        src=face_normals[:, None, :].expand(_F, 3, 3),
    )
    vertex_normals = vertex_normals.sum(dim=1)  # V,3
    return F.normalize(vertex_normals, eps=1e-6, dim=1)


def normalize_vertices_array(
    vertices: Union[torch.Tensor, np.ndarray],
    mesh_scale: float = 1.0,
    exec_norm: bool = True,
):
    if isinstance(vertices, torch.Tensor):
        bbmin, bbmax = vertices.min(0)[0], vertices.max(0)[0]
    else:
        bbmin, bbmax = vertices.min(0), vertices.max(0)  # (3,)
    center = (bbmin + bbmax) * 0.5
    bbsize = bbmax - bbmin
    scale = 2 * mesh_scale / bbsize.max()
    if exec_norm:
        vertices = (vertices - center) * scale

    return vertices, scale, center


def load_mesh_to_unit_cube(
    mesh_file: str,
    mesh_scale: float = 1.0,
) -> tuple[trimesh.Trimesh, float, list[float]]:
    if not os.path.exists(mesh_file):
        raise FileNotFoundError(f"mesh_file path {mesh_file} not exists.")

    mesh = trimesh.load(mesh_file)
    if isinstance(mesh, trimesh.Scene):
        mesh = trimesh.utils.concatenate(mesh)

    vertices, scale, center = normalize_vertices_array(
        mesh.vertices, mesh_scale
    )
    mesh.vertices = vertices

    return mesh, scale, center


def as_list(obj):
    if isinstance(obj, (list, tuple)):
        return obj
    elif isinstance(obj, set):
        return list(obj)
    else:
        return [obj]


@dataclass
class CameraSetting:
    """Camera settings for images rendering."""

    num_images: int
    elevation: list[float]
    distance: float
    resolution_hw: tuple[int, int]
    fov: float
    at: tuple[float, float, float] = field(
        default_factory=lambda: (0.0, 0.0, 0.0)
    )
    up: tuple[float, float, float] = field(
        default_factory=lambda: (0.0, 1.0, 0.0)
    )
    device: str = "cuda"
    near: float = 1e-2
    far: float = 1e2

    def __post_init__(
        self,
    ):
        h = self.resolution_hw[0]
        f = (h / 2) / math.tan(self.fov / 2)
        cx = self.resolution_hw[1] / 2
        cy = self.resolution_hw[0] / 2
        Ks = [
            [f, 0, cx],
            [0, f, cy],
            [0, 0, 1],
        ]

        self.Ks = Ks


@dataclass
class RenderItems(str, Enum):
    IMAGE = "image_color"
    ALPHA = "image_mask"
    VIEW_NORMAL = "image_view_normal"
    GLOBAL_NORMAL = "image_global_normal"
    POSITION_MAP = "image_position"
    DEPTH = "image_depth"
    ALBEDO = "image_albedo"
    DIFFUSE = "image_diffuse"


def compute_az_el_by_camera_params(
    camera_params: CameraSetting, flip_az: bool = False
):
    num_view = camera_params.num_images // len(camera_params.elevation)
    view_interval = 2 * np.pi / num_view / 2
    azimuths = []
    elevations = []
    for idx, el in enumerate(camera_params.elevation):
        azs = np.arange(num_view) / num_view * np.pi * 2 + idx * view_interval
        if flip_az:
            azs *= -1
        els = np.deg2rad(np.array([el] * num_view))
        azimuths.append(azs)
        elevations.append(els)

    azimuths = np.concatenate(azimuths, axis=0)
    elevations = np.concatenate(elevations, axis=0)

    return azimuths, elevations


def init_kal_camera(camera_params: CameraSetting) -> Camera:
    azimuths, elevations = compute_az_el_by_camera_params(camera_params)
    cam_pts = compute_cam_pts_by_az_el(
        azimuths, elevations, camera_params.distance
    )

    up = torch.cat(
        [
            torch.tensor(camera_params.up).repeat(camera_params.num_images, 1),
        ],
        dim=0,
    )

    camera = Camera.from_args(
        eye=torch.tensor(cam_pts),
        at=torch.tensor(camera_params.at),
        up=up,
        fov=camera_params.fov,
        height=camera_params.resolution_hw[0],
        width=camera_params.resolution_hw[1],
        near=camera_params.near,
        far=camera_params.far,
        device=camera_params.device,
    )

    return camera


def import_kaolin_mesh(mesh_path: str, with_mtl: bool = False):
    if mesh_path.endswith(".glb"):
        mesh = kal.io.gltf.import_mesh(mesh_path)
    elif mesh_path.endswith(".obj"):
        with_material = True if with_mtl else False
        mesh = kal.io.obj.import_mesh(mesh_path, with_materials=with_material)
        if with_mtl and mesh.materials and len(mesh.materials) > 0:
            material = kal.render.materials.PBRMaterial()
            assert (
                "map_Kd" in mesh.materials[0]
            ), "'map_Kd' not found in materials."
            material.diffuse_texture = mesh.materials[0]["map_Kd"] / 255.0
            mesh.materials = [material]
    elif mesh_path.endswith(".ply"):
        mesh = trimesh.load(mesh_path)
        mesh_path = mesh_path.replace(".ply", ".obj")
        mesh.export(mesh_path)
        mesh = kal.io.obj.import_mesh(mesh_path)
    elif mesh_path.endswith(".off"):
        mesh = kal.io.off.import_mesh(mesh_path)
    else:
        raise RuntimeError(
            f"{mesh_path} mesh type not supported, "
            "supported mesh type `.glb`, `.obj`, `.ply`, `.off`."
        )

    return mesh


def save_mesh_with_mtl(
    vertices: np.ndarray,
    faces: np.ndarray,
    uvs: np.ndarray,
    texture: Union[Image.Image, np.ndarray],
    output_path: str,
    material_base=(250, 250, 250, 255),
) -> trimesh.Trimesh:
    if isinstance(texture, np.ndarray):
        texture = Image.fromarray(texture)

    mesh = trimesh.Trimesh(
        vertices,
        faces,
        visual=trimesh.visual.TextureVisuals(uv=uvs, image=texture),
    )
    mesh.visual.material = trimesh.visual.material.SimpleMaterial(
        image=texture,
        diffuse=material_base,
        ambient=material_base,
        specular=material_base,
    )

    dir_name = os.path.dirname(output_path)
    os.makedirs(dir_name, exist_ok=True)

    _ = mesh.export(output_path)
    # texture.save(os.path.join(dir_name, f"{file_name}_texture.png"))

    logger.info(f"Saved mesh with texture to {output_path}")

    return mesh


def get_images_from_grid(
    image: Union[str, Image.Image], img_size: int
) -> list[Image.Image]:
    if isinstance(image, str):
        image = Image.open(image)

    view_images = np.array(image)
    view_images = np.concatenate(
        [view_images[:img_size, ...], view_images[img_size:, ...]], axis=1
    )
    images = np.split(view_images, view_images.shape[1] // img_size, axis=1)
    images = [Image.fromarray(img) for img in images]

    return images


def post_process_texture(texture: np.ndarray, iter: int = 2) -> np.ndarray:
    for _ in range(iter):
        texture = cv2.fastNlMeansDenoisingColored(texture, None, 13, 13, 9, 27)
        texture = cv2.bilateralFilter(
            texture, d=9, sigmaColor=80, sigmaSpace=80
        )

    return texture