Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,270 Bytes
55ed985 be7eba9 55ed985 be7eba9 55ed985 cbafcf5 55ed985 dc66801 55ed985 c85a832 55ed985 be7eba9 55ed985 be7eba9 55ed985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import logging
import os
import struct
from dataclasses import dataclass, field
from typing import Optional, Union
import cv2
import numpy as np
import torch
from gsplat.cuda._wrapper import spherical_harmonics
from gsplat.rendering import rasterization
from plyfile import PlyData
from scipy.spatial.transform import Rotation
from torch.nn import functional as F
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
__all__ = [
"RenderResult",
"GaussianOperator",
]
def quat_mult(q1, q2):
# NOTE:
# Q1 is the quaternion that rotates the vector from the original position to the final position # noqa
# Q2 is the quaternion that been rotated
w1, x1, y1, z1 = q1.T
w2, x2, y2, z2 = q2.T
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
return torch.stack([w, x, y, z]).T
def quat_to_rotmat(quats: torch.Tensor, mode="wxyz") -> torch.Tensor:
"""Convert quaternion to rotation matrix."""
quats = F.normalize(quats, p=2, dim=-1)
if mode == "xyzw":
x, y, z, w = torch.unbind(quats, dim=-1)
elif mode == "wxyz":
w, x, y, z = torch.unbind(quats, dim=-1)
else:
raise ValueError(f"Invalid mode: {mode}.")
R = torch.stack(
[
1 - 2 * (y**2 + z**2),
2 * (x * y - w * z),
2 * (x * z + w * y),
2 * (x * y + w * z),
1 - 2 * (x**2 + z**2),
2 * (y * z - w * x),
2 * (x * z - w * y),
2 * (y * z + w * x),
1 - 2 * (x**2 + y**2),
],
dim=-1,
)
return R.reshape(quats.shape[:-1] + (3, 3))
def gamma_shs(shs: torch.Tensor, gamma: float) -> torch.Tensor:
C0 = 0.28209479177387814 # Constant for normalization in spherical harmonics # noqa
# Clip to the range [0.0, 1.0], apply gamma correction, and then un-clip back # noqa
new_shs = torch.clip(shs * C0 + 0.5, 0.0, 1.0)
new_shs = (torch.pow(new_shs, gamma) - 0.5) / C0
return new_shs
@dataclass
class RenderResult:
rgb: np.ndarray
depth: np.ndarray
opacity: np.ndarray
mask_threshold: float = 10
mask: Optional[np.ndarray] = None
rgba: Optional[np.ndarray] = None
def __post_init__(self):
if isinstance(self.rgb, torch.Tensor):
rgb = self.rgb.detach().cpu().numpy()
rgb = (rgb * 255).astype(np.uint8)
self.rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
if isinstance(self.depth, torch.Tensor):
self.depth = self.depth.detach().cpu().numpy()
if isinstance(self.opacity, torch.Tensor):
opacity = self.opacity.detach().cpu().numpy()
opacity = (opacity * 255).astype(np.uint8)
self.opacity = cv2.cvtColor(opacity, cv2.COLOR_GRAY2RGB)
mask = np.where(self.opacity > self.mask_threshold, 255, 0)
self.mask = mask[..., 0:1].astype(np.uint8)
self.rgba = np.concatenate([self.rgb, self.mask], axis=-1)
@dataclass
class GaussianBase:
_opacities: torch.Tensor
_means: torch.Tensor
_scales: torch.Tensor
_quats: torch.Tensor
_rgbs: Optional[torch.Tensor] = None
_features_dc: Optional[torch.Tensor] = None
_features_rest: Optional[torch.Tensor] = None
sh_degree: Optional[int] = 0
device: str = "cuda"
def __post_init__(self):
self.active_sh_degree: int = self.sh_degree
self.to(self.device)
def to(self, device: str) -> None:
for k, v in self.__dict__.items():
if not isinstance(v, torch.Tensor):
continue
self.__dict__[k] = v.to(device)
def get_numpy_data(self):
data = {}
for k, v in self.__dict__.items():
if not isinstance(v, torch.Tensor):
continue
data[k] = v.detach().cpu().numpy()
return data
def quat_norm(self, x: torch.Tensor) -> torch.Tensor:
return x / x.norm(dim=-1, keepdim=True)
@classmethod
def load_from_ply(
cls,
path: str,
gamma: float = 1.0,
device: str = "cuda",
) -> "GaussianBase":
plydata = PlyData.read(path)
xyz = torch.stack(
(
torch.tensor(plydata.elements[0]["x"], dtype=torch.float32),
torch.tensor(plydata.elements[0]["y"], dtype=torch.float32),
torch.tensor(plydata.elements[0]["z"], dtype=torch.float32),
),
dim=1,
)
opacities = torch.tensor(
plydata.elements[0]["opacity"], dtype=torch.float32
).unsqueeze(-1)
features_dc = torch.zeros((xyz.shape[0], 3), dtype=torch.float32)
features_dc[:, 0] = torch.tensor(
plydata.elements[0]["f_dc_0"], dtype=torch.float32
)
features_dc[:, 1] = torch.tensor(
plydata.elements[0]["f_dc_1"], dtype=torch.float32
)
features_dc[:, 2] = torch.tensor(
plydata.elements[0]["f_dc_2"], dtype=torch.float32
)
scale_names = [
p.name
for p in plydata.elements[0].properties
if p.name.startswith("scale_")
]
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
scales = torch.zeros(
(xyz.shape[0], len(scale_names)), dtype=torch.float32
)
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = torch.tensor(
plydata.elements[0][attr_name], dtype=torch.float32
)
rot_names = [
p.name
for p in plydata.elements[0].properties
if p.name.startswith("rot_")
]
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
rots = torch.zeros((xyz.shape[0], len(rot_names)), dtype=torch.float32)
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = torch.tensor(
plydata.elements[0][attr_name], dtype=torch.float32
)
rots = rots / torch.norm(rots, dim=-1, keepdim=True)
# extra features
extra_f_names = [
p.name
for p in plydata.elements[0].properties
if p.name.startswith("f_rest_")
]
extra_f_names = sorted(
extra_f_names, key=lambda x: int(x.split("_")[-1])
)
max_sh_degree = int(np.sqrt((len(extra_f_names) + 3) / 3) - 1)
if max_sh_degree != 0:
features_extra = torch.zeros(
(xyz.shape[0], len(extra_f_names)), dtype=torch.float32
)
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = torch.tensor(
plydata.elements[0][attr_name], dtype=torch.float32
)
features_extra = features_extra.view(
(features_extra.shape[0], 3, (max_sh_degree + 1) ** 2 - 1)
)
features_extra = features_extra.permute(0, 2, 1)
if abs(gamma - 1.0) > 1e-3:
features_dc = gamma_shs(features_dc, gamma)
features_extra[..., :] = 0.0
opacities *= 0.8
shs = torch.cat(
[
features_dc.reshape(-1, 3),
features_extra.reshape(len(features_dc), -1),
],
dim=-1,
)
else:
# sh_dim is 0, only dc features
shs = features_dc
features_extra = None
return cls(
sh_degree=max_sh_degree,
_means=xyz,
_opacities=opacities,
_rgbs=shs,
_scales=scales,
_quats=rots,
_features_dc=features_dc,
_features_rest=features_extra,
device=device,
)
def save_to_ply(
self, path: str, colors: torch.Tensor = None, enable_mask: bool = False
):
os.makedirs(os.path.dirname(path), exist_ok=True)
numpy_data = self.get_numpy_data()
means = numpy_data["_means"]
scales = numpy_data["_scales"]
quats = numpy_data["_quats"]
opacities = numpy_data["_opacities"]
sh0 = numpy_data["_features_dc"]
shN = numpy_data.get("_features_rest", np.zeros((means.shape[0], 0)))
shN = shN.reshape(means.shape[0], -1)
# Create a mask to identify rows with NaN or Inf in any of the numpy_data arrays # noqa
if enable_mask:
invalid_mask = (
np.isnan(means).any(axis=1)
| np.isinf(means).any(axis=1)
| np.isnan(scales).any(axis=1)
| np.isinf(scales).any(axis=1)
| np.isnan(quats).any(axis=1)
| np.isinf(quats).any(axis=1)
| np.isnan(opacities).any(axis=0)
| np.isinf(opacities).any(axis=0)
| np.isnan(sh0).any(axis=1)
| np.isinf(sh0).any(axis=1)
| np.isnan(shN).any(axis=1)
| np.isinf(shN).any(axis=1)
)
# Filter out rows with NaNs or Infs from all data arrays
means = means[~invalid_mask]
scales = scales[~invalid_mask]
quats = quats[~invalid_mask]
opacities = opacities[~invalid_mask]
sh0 = sh0[~invalid_mask]
shN = shN[~invalid_mask]
num_points = means.shape[0]
with open(path, "wb") as f:
# Write PLY header
f.write(b"ply\n")
f.write(b"format binary_little_endian 1.0\n")
f.write(f"element vertex {num_points}\n".encode())
f.write(b"property float x\n")
f.write(b"property float y\n")
f.write(b"property float z\n")
f.write(b"property float nx\n")
f.write(b"property float ny\n")
f.write(b"property float nz\n")
if colors is not None:
for j in range(colors.shape[1]):
f.write(f"property float f_dc_{j}\n".encode())
else:
for i, data in enumerate([sh0, shN]):
prefix = "f_dc" if i == 0 else "f_rest"
for j in range(data.shape[1]):
f.write(f"property float {prefix}_{j}\n".encode())
f.write(b"property float opacity\n")
for i in range(scales.shape[1]):
f.write(f"property float scale_{i}\n".encode())
for i in range(quats.shape[1]):
f.write(f"property float rot_{i}\n".encode())
f.write(b"end_header\n")
# Write vertex data
for i in range(num_points):
f.write(struct.pack("<fff", *means[i])) # x, y, z
f.write(struct.pack("<fff", 0, 0, 0)) # nx, ny, nz (zeros)
if colors is not None:
color = colors.detach().cpu().numpy()
for j in range(color.shape[1]):
f_dc = (color[i, j] - 0.5) / 0.2820947917738781
f.write(struct.pack("<f", f_dc))
else:
for data in [sh0, shN]:
for j in range(data.shape[1]):
f.write(struct.pack("<f", data[i, j]))
f.write(struct.pack("<f", opacities[i])) # opacity
for data in [scales, quats]:
for j in range(data.shape[1]):
f.write(struct.pack("<f", data[i, j]))
@dataclass
class GaussianOperator(GaussianBase):
def _compute_transform(
self,
means: torch.Tensor,
quats: torch.Tensor,
instance_pose: torch.Tensor,
):
"""Compute the transform of the GS models.
Args:
means: tensor of gs means.
quats: tensor of gs quaternions.
instance_pose: instances poses in [x y z qx qy qz qw] format.
"""
# (x y z qx qy qz qw) -> (x y z qw qx qy qz)
instance_pose = instance_pose[[0, 1, 2, 6, 3, 4, 5]]
cur_instances_quats = self.quat_norm(instance_pose[3:])
rot_cur = quat_to_rotmat(cur_instances_quats, mode="wxyz")
# update the means
num_gs = means.shape[0]
trans_per_pts = torch.stack([instance_pose[:3]] * num_gs, dim=0)
quat_per_pts = torch.stack([instance_pose[3:]] * num_gs, dim=0)
rot_per_pts = torch.stack([rot_cur] * num_gs, dim=0) # (num_gs, 3, 3)
# update the means
cur_means = (
torch.bmm(rot_per_pts, means.unsqueeze(-1)).squeeze(-1)
+ trans_per_pts
)
# update the quats
_quats = self.quat_norm(quats)
cur_quats = quat_mult(quat_per_pts, _quats)
return cur_means, cur_quats
def get_gaussians(
self,
c2w: torch.Tensor = None,
instance_pose: torch.Tensor = None,
apply_activate: bool = False,
) -> "GaussianBase":
"""Get Gaussian data under the given instance_pose."""
if c2w is None:
c2w = torch.eye(4).to(self.device)
if instance_pose is not None:
# compute the transformed gs means and quats
world_means, world_quats = self._compute_transform(
self._means, self._quats, instance_pose.float().to(self.device)
)
else:
world_means, world_quats = self._means, self._quats
# get colors of gaussians
if self._features_rest is not None:
colors = torch.cat(
(self._features_dc[:, None, :], self._features_rest), dim=1
)
else:
colors = self._features_dc[:, None, :]
if self.sh_degree > 0:
viewdirs = world_means.detach() - c2w[..., :3, 3] # (N, 3)
viewdirs = viewdirs / viewdirs.norm(dim=-1, keepdim=True)
rgbs = spherical_harmonics(self.sh_degree, viewdirs, colors)
rgbs = torch.clamp(rgbs + 0.5, 0.0, 1.0)
else:
rgbs = torch.sigmoid(colors[:, 0, :])
gs_dict = dict(
_means=world_means,
_opacities=(
torch.sigmoid(self._opacities)
if apply_activate
else self._opacities
),
_rgbs=rgbs,
_scales=(
torch.exp(self._scales) if apply_activate else self._scales
),
_quats=self.quat_norm(world_quats),
_features_dc=self._features_dc,
_features_rest=self._features_rest,
sh_degree=self.sh_degree,
device=self.device,
)
print("self.device", self.device)
return GaussianOperator(**gs_dict)
def rescale(self, scale: float):
if scale != 1.0:
self._means *= scale
self._scales += torch.log(self._scales.new_tensor(scale))
def set_scale_by_height(self, real_height: float) -> None:
def _ptp(tensor, dim):
val = tensor.max(dim=dim).values - tensor.min(dim=dim).values
return val.tolist()
xyz_scale = max(_ptp(self._means, dim=0))
self.rescale(1 / (xyz_scale + 1e-6)) # Normalize to [-0.5, 0.5]
raw_height = _ptp(self._means, dim=0)[1]
scale = real_height / raw_height
self.rescale(scale)
return
@staticmethod
def resave_ply(
in_ply: str,
out_ply: str,
real_height: float = None,
instance_pose: np.ndarray = None,
sh_degree: int = 0,
device: str = "cuda",
) -> None:
gs_model = GaussianOperator.load_from_ply(in_ply, sh_degree, device=device)
if instance_pose is not None:
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
if real_height is not None:
gs_model.set_scale_by_height(real_height)
gs_model.save_to_ply(out_ply)
return
@staticmethod
def trans_to_quatpose(
rot_matrix: list[list[float]],
trans_matrix: list[float] = [0, 0, 0],
) -> torch.Tensor:
if isinstance(rot_matrix, list):
rot_matrix = np.array(rot_matrix)
rot = Rotation.from_matrix(rot_matrix)
qx, qy, qz, qw = rot.as_quat()
instance_pose = torch.tensor([*trans_matrix, qx, qy, qz, qw])
return instance_pose
def render(
self,
c2w: torch.Tensor,
Ks: torch.Tensor,
image_width: int,
image_height: int,
) -> RenderResult:
gs = self.get_gaussians(c2w, apply_activate=True)
renders, alphas, _ = rasterization(
means=gs._means,
quats=gs._quats,
scales=gs._scales,
opacities=gs._opacities.squeeze(),
colors=gs._rgbs,
viewmats=torch.linalg.inv(c2w)[None, ...],
Ks=Ks[None, ...],
width=image_width,
height=image_height,
packed=False,
absgrad=True,
sparse_grad=False,
# rasterize_mode="classic",
rasterize_mode="antialiased",
**{
"near_plane": 0.01,
"far_plane": 1000000000,
"radius_clip": 0.0,
"render_mode": "RGB+ED",
},
)
renders = renders[0]
alphas = alphas[0].squeeze(-1)
assert renders.shape[-1] == 4, f"Must render rgb, depth and alpha"
rendered_rgb, rendered_depth = torch.split(renders, [3, 1], dim=-1)
return RenderResult(
torch.clamp(rendered_rgb, min=0, max=1),
rendered_depth,
alphas[..., None],
)
if __name__ == "__main__":
input_gs = "outputs/test/debug.ply"
output_gs = "./debug_v3.ply"
gs_model: GaussianOperator = GaussianOperator.load_from_ply(input_gs)
# 绕 x 轴旋转 180°
R_x = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
instance_pose = gs_model.trans_to_quatpose(R_x)
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
gs_model.rescale(2)
gs_model.set_scale_by_height(1.3)
gs_model.save_to_ply(output_gs)
|