File size: 4,527 Bytes
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4811e40
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4811e40
 
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import logging

import torch
from diffusers import (
    AutoencoderKL,
    EulerDiscreteScheduler,
    UNet2DConditionModel,
)
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import (
    UNet2DConditionModel as UNet2DConditionModelIP,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
    StableDiffusionXLPipeline,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import (  # noqa
    StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
)
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


__all__ = [
    "build_text2img_ip_pipeline",
    "build_text2img_pipeline",
    "text2img_gen",
]


def build_text2img_ip_pipeline(
    ckpt_dir: str,
    ref_scale: float,
    device: str = "cuda",
) -> StableDiffusionXLPipelineIP:
    text_encoder = ChatGLMModel.from_pretrained(
        f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
    ).half()
    tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
    vae = AutoencoderKL.from_pretrained(
        f"{ckpt_dir}/vae", revision=None
    ).half()
    scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
    unet = UNet2DConditionModelIP.from_pretrained(
        f"{ckpt_dir}/unet", revision=None
    ).half()
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        f"{ckpt_dir}/../Kolors-IP-Adapter-Plus/image_encoder",
        ignore_mismatched_sizes=True,
    ).to(dtype=torch.float16)
    clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)

    pipe = StableDiffusionXLPipelineIP(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False,
    )

    if hasattr(pipe.unet, "encoder_hid_proj"):
        pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj

    pipe.load_ip_adapter(
        f"{ckpt_dir}/../Kolors-IP-Adapter-Plus",
        subfolder="",
        weight_name=["ip_adapter_plus_general.bin"],
    )
    pipe.set_ip_adapter_scale([ref_scale])

    pipe = pipe.to(device)
    # pipe.enable_model_cpu_offload()
    # pipe.enable_xformers_memory_efficient_attention()
    # pipe.enable_vae_slicing()

    return pipe


def build_text2img_pipeline(
    ckpt_dir: str,
    device: str = "cuda",
) -> StableDiffusionXLPipeline:
    text_encoder = ChatGLMModel.from_pretrained(
        f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
    ).half()
    tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
    vae = AutoencoderKL.from_pretrained(
        f"{ckpt_dir}/vae", revision=None
    ).half()
    scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
    unet = UNet2DConditionModel.from_pretrained(
        f"{ckpt_dir}/unet", revision=None
    ).half()
    pipe = StableDiffusionXLPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        force_zeros_for_empty_prompt=False,
    )
    pipe = pipe.to(device)
    # pipe.enable_model_cpu_offload()
    # pipe.enable_xformers_memory_efficient_attention()

    return pipe


def text2img_gen(
    prompt: str,
    n_sample: int,
    guidance_scale: float,
    pipeline: StableDiffusionXLPipeline | StableDiffusionXLPipelineIP,
    ip_image: Image.Image | str = None,
    image_wh: tuple[int, int] = [1024, 1024],
    infer_step: int = 50,
    ip_image_size: int = 512,
) -> list[Image.Image]:
    prompt = "Single " + prompt + ", in the center of the image"
    prompt += ", high quality, high resolution, best quality, white background, 3D style,"  # noqa
    logger.info(f"Processing prompt: {prompt}")

    kwargs = dict(
        prompt=prompt,
        height=image_wh[1],
        width=image_wh[0],
        num_inference_steps=infer_step,
        guidance_scale=guidance_scale,
        num_images_per_prompt=n_sample,
    )
    if ip_image is not None:
        if isinstance(ip_image, str):
            ip_image = Image.open(ip_image)
        ip_image = ip_image.resize((ip_image_size, ip_image_size))
        kwargs.update(ip_adapter_image=[ip_image])

    return pipeline(**kwargs).images