Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,724 Bytes
58bf798 95b592a 58bf798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import argparse
import logging
import os
import sys
from glob import glob
import numpy as np
import trimesh
from PIL import Image
from asset3d_gen.data.backproject_v2 import entrypoint as backproject_api
from asset3d_gen.models.delight_model import DelightingModel
from asset3d_gen.models.gs_model import GaussianOperator
from asset3d_gen.models.segment_model import (
BMGG14Remover,
RembgRemover,
SAMPredictor,
trellis_preprocess,
)
from asset3d_gen.models.sr_model import ImageRealESRGAN
from asset3d_gen.scripts.render_gs import entrypoint as render_gs_api
from asset3d_gen.utils.gpt_clients import GPT_CLIENT
from asset3d_gen.utils.process_media import (
merge_images_video,
render_asset3d,
render_mesh,
render_video,
)
from asset3d_gen.utils.tags import VERSION
from asset3d_gen.validators.quality_checkers import (
BaseChecker,
ImageAestheticChecker,
ImageSegChecker,
MeshGeoChecker,
)
from asset3d_gen.validators.urdf_convertor import URDFGenerator
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_dir, "../.."))
from thirdparty.TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer
from thirdparty.TRELLIS.trellis.representations import (
Gaussian,
MeshExtractResult,
)
from thirdparty.TRELLIS.trellis.representations.gaussian.general_utils import (
build_scaling_rotation,
inverse_sigmoid,
strip_symmetric,
)
from thirdparty.TRELLIS.trellis.utils import postprocessing_utils
from thirdparty.TRELLIS.trellis.utils.render_utils import (
render_frames,
yaw_pitch_r_fov_to_extrinsics_intrinsics,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
os.environ["TORCH_EXTENSIONS_DIR"] = os.path.expanduser(
"~/.cache/torch_extensions"
)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
os.environ["SPCONV_ALGO"] = "native"
DELIGHT = DelightingModel()
IMAGESR_MODEL = ImageRealESRGAN(outscale=4)
RBG_REMOVER = RembgRemover()
RBG14_REMOVER = BMGG14Remover()
SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
"jetx/trellis-image-large"
)
PIPELINE.cuda()
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
AESTHETIC_CHECKER = ImageAestheticChecker()
CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER]
TMP_DIR = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d"
)
def parse_args():
parser = argparse.ArgumentParser(description="Image to 3D pipeline args.")
parser.add_argument(
"--image_path", type=str, nargs="+", help="Path to the input images."
)
parser.add_argument(
"--image_root", type=str, help="Path to the input images folder."
)
parser.add_argument(
"--output_root",
type=str,
required=True,
help="Root directory for saving outputs.",
)
parser.add_argument(
"--no_mesh", action="store_true", help="Do not output mesh files."
)
parser.add_argument(
"--height_range",
type=str,
default=None,
help="The hight in meter to restore the mesh real size.",
)
parser.add_argument(
"--mass_range",
type=str,
default=None,
help="The mass in kg to restore the mesh real weight.",
)
parser.add_argument("--asset_type", type=str, default=None)
parser.add_argument("--skip_exists", action="store_true")
parser.add_argument("--strict_seg", action="store_true")
parser.add_argument("--version", type=str, default=VERSION)
args = parser.parse_args()
assert (
args.image_path or args.image_root
), "Please provide either --image_path or --image_root."
if not args.image_path:
args.image_path = glob(os.path.join(args.image_root, "*.png"))
args.image_path += glob(os.path.join(args.image_root, "*.jpg"))
args.image_path += glob(os.path.join(args.image_root, "*.jpeg"))
return args
def get_segmented_image(
image,
sam_remover,
rbg_remover,
seg_checker,
image_path,
seg_path,
mode="loose",
) -> Image.Image:
def _is_valid_seg(img: Image.Image) -> bool:
return img.mode == "RGBA" and seg_checker([image_path, seg_path])[0]
seg_image = sam_remover(image, save_path=seg_path)
if not _is_valid_seg(seg_image):
logger.warning(
f"Failed to segment {image_path} by SAM, retry with `rembg`."
) # noqa
seg_image = rbg_remover(image, save_path=seg_path)
if not _is_valid_seg(seg_image):
if mode == "strict":
raise RuntimeError(
f"Failed to segment {image_path} by SAM and rembg, abort."
)
logger.warning(
f"Failed to segment {image_path} by rembg, use raw image."
) # noqa
seg_image = image.convert("RGBA")
seg_image.save(seg_path)
return seg_image
if __name__ == "__main__":
args = parse_args()
for image_path in args.image_path:
try:
filename = os.path.basename(image_path).split(".")[0]
output_root = args.output_root
if args.image_root is not None:
output_root = os.path.join(output_root, filename)
os.makedirs(output_root, exist_ok=True)
mesh_out = f"{output_root}/{filename}.obj"
if args.skip_exists and os.path.exists(mesh_out):
logger.info(
f"Skip {image_path}, already processed in {mesh_out}"
)
continue
image = Image.open(image_path)
image.save(f"{output_root}/{filename}_raw.png")
# Segmentation: Get segmented image using SAM or Rembg.
seg_path = f"{output_root}/{filename}_cond.png"
if image.mode != "RGBA":
seg_image = RBG_REMOVER(image, save_path=seg_path)
seg_image = trellis_preprocess(seg_image)
else:
seg_image = image
seg_image.save(seg_path)
# Run the pipeline
try:
outputs = PIPELINE.run(
seg_image,
preprocess_image=False,
# Optional parameters
# seed=1,
# sparse_structure_sampler_params={
# "steps": 12,
# "cfg_strength": 7.5,
# },
# slat_sampler_params={
# "steps": 12,
# "cfg_strength": 3,
# },
)
except Exception as e:
logger.error(
f"[Pipeline Failed] process {image_path}: {e}, skip."
)
continue
# Render and save color and mesh videos
gs_model = outputs["gaussian"][0]
mesh_model = outputs["mesh"][0]
color_images = render_video(gs_model)["color"]
normal_images = render_video(mesh_model)["normal"]
video_path = os.path.join(output_root, "gs_mesh.mp4")
merge_images_video(color_images, normal_images, video_path)
if not args.no_mesh:
# Save the raw Gaussian model
gs_path = mesh_out.replace(".obj", "_gs.ply")
gs_model.save_ply(gs_path)
# Rotate mesh and GS by 90 degrees around Z-axis.
rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
gs_add_rot = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
mesh_add_rot = [[1, 0, 0], [0, 0, -1], [0, 1, 0]]
# Addtional rotation for GS to align mesh.
gs_rot = np.array(gs_add_rot) @ np.array(rot_matrix)
pose = GaussianOperator.trans_to_quatpose(gs_rot)
aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
GaussianOperator.resave_ply(
in_ply=gs_path,
out_ply=aligned_gs_path,
instance_pose=pose,
device="cpu",
)
color_path = os.path.join(output_root, "color.png")
render_gs_api(aligned_gs_path, color_path)
mesh = trimesh.Trimesh(
vertices=mesh_model.vertices.cpu().numpy(),
faces=mesh_model.faces.cpu().numpy(),
)
mesh.vertices = mesh.vertices @ np.array(mesh_add_rot)
mesh.vertices = mesh.vertices @ np.array(rot_matrix)
mesh_obj_path = os.path.join(output_root, f"{filename}.obj")
mesh.export(mesh_obj_path)
mesh = backproject_api(
delight_model=DELIGHT,
imagesr_model=IMAGESR_MODEL,
color_path=color_path,
mesh_path=mesh_obj_path,
output_path=mesh_obj_path,
skip_fix_mesh=False,
delight=True,
texture_wh=[2048, 2048],
)
mesh_glb_path = os.path.join(output_root, f"{filename}.glb")
mesh.export(mesh_glb_path)
urdf_convertor = URDFGenerator(GPT_CLIENT, render_view_num=4)
asset_attrs = {
"version": VERSION,
"gs_model": f"{urdf_convertor.output_mesh_dir}/{filename}_gs.ply",
}
if args.height_range:
min_height, max_height = map(
float, args.height_range.split("-")
)
asset_attrs["min_height"] = min_height
asset_attrs["max_height"] = max_height
if args.mass_range:
min_mass, max_mass = map(float, args.mass_range.split("-"))
asset_attrs["min_mass"] = min_mass
asset_attrs["max_mass"] = max_mass
if args.asset_type:
asset_attrs["category"] = args.asset_type
if args.version:
asset_attrs["version"] = args.version
urdf_path = urdf_convertor(
mesh_path=mesh_obj_path,
output_root=f"{output_root}/URDF_{filename}",
**asset_attrs,
)
# Rescale GS and save to URDF/mesh folder.
real_height = urdf_convertor.get_attr_from_urdf(
urdf_path, attr_name="real_height"
)
out_gs = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}_gs.ply" # noqa
GaussianOperator.resave_ply(
in_ply=aligned_gs_path,
out_ply=out_gs,
real_height=real_height,
device="cpu",
)
# Quality check and update .urdf file.
mesh_out = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}.obj" # noqa
trimesh.load(mesh_out).export(mesh_out.replace(".obj", ".glb"))
# image_paths = render_asset3d(
# mesh_path=mesh_out,
# output_root=f"{output_root}/URDF_{filename}",
# output_subdir="qa_renders",
# num_images=8,
# elevation=(30, -30),
# distance=5.5,
# )
image_dir = f"{output_root}/URDF_{filename}/{urdf_convertor.output_render_dir}/image_color" # noqa
image_paths = glob(f"{image_dir}/*.png")
images_list = []
for checker in CHECKERS:
images = image_paths
if isinstance(checker, ImageSegChecker):
images = [
f"{output_root}/{filename}_raw.png",
f"{output_root}/{filename}_cond.png",
]
images_list.append(images)
results = BaseChecker.validate(CHECKERS, images_list)
urdf_convertor.add_quality_tag(urdf_path, results)
except Exception as e:
logger.error(f"Failed to process {image_path}: {e}, skip.")
continue
logger.info(f"Processing complete. Outputs saved to {args.output_root}")
|