Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,738 Bytes
55ed985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import logging
import os
from tqdm import tqdm
from asset3d_gen.utils.gpt_clients import GPT_CLIENT, GPTclient
from asset3d_gen.utils.process_media import render_asset3d
from asset3d_gen.validators.aesthetic_predictor import AestheticPredictor
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class BaseChecker:
def __init__(self, prompt: str = None, verbose: bool = False) -> None:
self.prompt = prompt
self.verbose = verbose
def query(self, *args, **kwargs):
raise NotImplementedError(
"Subclasses must implement the query method."
)
def __call__(self, *args, **kwargs) -> bool:
response = self.query(*args, **kwargs)
if response is None:
response = "Error when calling gpt api."
if self.verbose and response != "YES":
logger.info(response)
flag = "YES" in response
response = "YES" if flag else response
return flag, response
@staticmethod
def validate(
checkers: list["BaseChecker"], images_list: list[list[str]]
) -> list:
assert len(checkers) == len(images_list)
results = []
overall_result = True
for checker, images in zip(checkers, images_list):
qa_flag, qa_info = checker(images)
if isinstance(qa_info, str):
qa_info = qa_info.replace("\n", ".")
results.append([checker.__class__.__name__, qa_info])
if qa_flag is False:
overall_result = False
results.append(["overall", "YES" if overall_result else "NO"])
return results
class MeshGeoChecker(BaseChecker):
def __init__(
self,
gpt_client: GPTclient,
prompt: str = None,
verbose: bool = False,
) -> None:
super().__init__(prompt, verbose)
self.gpt_client = gpt_client
if self.prompt is None:
self.prompt = """
Refer to the provided multi-view rendering images to evaluate
whether the geometry of the 3D object asset is complete and
whether the asset can be placed stably on the ground.
Return "YES" only if reach the requirments,
otherwise "NO" and explain the reason very briefly.
"""
def query(self, image_paths: str) -> str:
# Hardcode tmp because of the openrouter can't input multi images.
if "openrouter" in self.gpt_client.endpoint:
from asset3d_gen.utils.process_media import (
combine_images_to_base64,
)
image_paths = combine_images_to_base64(image_paths)
return self.gpt_client.query(
text_prompt=self.prompt,
image_base64=image_paths,
)
class ImageSegChecker(BaseChecker):
def __init__(
self,
gpt_client: GPTclient,
prompt: str = None,
verbose: bool = False,
) -> None:
super().__init__(prompt, verbose)
self.gpt_client = gpt_client
if self.prompt is None:
self.prompt = """
The first image is the original, and the second image is the
result after segmenting the main object. Evaluate the segmentation
quality to ensure the main object is clearly segmented without
significant truncation. Note that the foreground of the object
needs to be extracted instead of the background.
Minor imperfections can be ignored. If segmentation is acceptable,
return "YES" only; otherwise, return "NO" with
very brief explanation.
"""
def query(self, image_paths: list[str]) -> str:
if len(image_paths) != 2:
raise ValueError(
"ImageSegChecker requires exactly two images: [raw_image, seg_image]." # noqa
)
# Hardcode tmp because of the openrouter can't input multi images.
if "openrouter" in self.gpt_client.endpoint:
from asset3d_gen.utils.process_media import (
combine_images_to_base64,
)
image_paths = combine_images_to_base64(image_paths)
return self.gpt_client.query(
text_prompt=self.prompt,
image_base64=image_paths,
)
class ImageAestheticChecker(BaseChecker):
def __init__(
self,
clip_model_dir: str = None,
sac_model_path: str = None,
thresh: float = 4.50,
verbose: bool = False,
) -> None:
super().__init__(verbose=verbose)
self.clip_model_dir = clip_model_dir
self.sac_model_path = sac_model_path
self.thresh = thresh
self.predictor = AestheticPredictor(clip_model_dir, sac_model_path)
def query(self, image_paths: list[str]) -> float:
scores = [self.predictor.predict(img_path) for img_path in image_paths]
return sum(scores) / len(scores)
def __call__(self, image_paths: list[str], **kwargs) -> bool:
avg_score = self.query(image_paths)
if self.verbose:
logger.info(f"Average aesthetic score: {avg_score}")
return avg_score > self.thresh, avg_score
if __name__ == "__main__":
geo_checker = MeshGeoChecker(GPT_CLIENT)
seg_checker = ImageSegChecker(GPT_CLIENT)
aesthetic_checker = ImageAestheticChecker(
"/horizon-bucket/robot_lab/users/xinjie.wang/weights/clip",
"/horizon-bucket/robot_lab/users/xinjie.wang/weights/sac/sac+logos+ava1-l14-linearMSE.pth", # noqa
)
checkers = [geo_checker, seg_checker, aesthetic_checker]
output_root = "outputs/test_gpt"
fails = []
for idx in tqdm(range(150)):
mesh_path = f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}.obj" # noqa
if not os.path.exists(mesh_path):
continue
image_paths = render_asset3d(
mesh_path,
f"{output_root}/{idx}",
num_images=8,
elevation=(30, -30),
distance=5.5,
)
for cid, checker in enumerate(checkers):
if isinstance(checker, ImageSegChecker):
images = [
f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}_raw.png", # noqa
f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}_cond.png", # noqa
]
else:
images = image_paths
result, info = checker(images)
logger.info(
f"Checker {checker.__class__.__name__}: {result}, {info}, mesh {mesh_path}" # noqa
)
if result is False:
fails.append((idx, cid, info))
break
|