Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,846 Bytes
55ed985 cbafcf5 55ed985 cbafcf5 55ed985 10c708b 55ed985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import logging
import os
import shutil
import xml.etree.ElementTree as ET
import zipfile
from datetime import datetime
from xml.dom.minidom import parseString
import numpy as np
import trimesh
from asset3d_gen.utils.gpt_clients import GPT_CLIENT, GPTclient
from asset3d_gen.utils.process_media import render_asset3d
from asset3d_gen.utils.tags import VERSION
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
__all__ = ["URDFGenerator"]
URDF_TEMPLATE = """
<robot name="template_robot">
<link name="template_link">
<visual>
<geometry>
<mesh filename="mesh.obj" scale="1.0 1.0 1.0"/>
</geometry>
</visual>
<collision>
<geometry>
<mesh filename="mesh.obj" scale="1.0 1.0 1.0"/>
</geometry>
<gazebo>
<mu1>0.8</mu1> <!-- 主摩擦系数 -->
<mu2>0.6</mu2> <!-- 次摩擦系数 -->
</gazebo>
</collision>
<inertial>
<mass value="1.0"/>
<origin xyz="0 0 0"/>
<inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
</inertial>
<extra_info>
<scale>1.0</scale>
<version>"0.0.0"</version>
<category>"unknown"</category>
<description>"unknown"</description>
<min_height>0.0</min_height>
<max_height>0.0</max_height>
<real_height>0.0</real_height>
<min_mass>0.0</min_mass>
<max_mass>0.0</max_mass>
<generate_time>"-1"</generate_time>
<gs_model>""</gs_model>
</extra_info>
</link>
</robot>
"""
def zip_files(input_paths: list[str], output_zip: str) -> str:
with zipfile.ZipFile(output_zip, "w", zipfile.ZIP_DEFLATED) as zipf:
for input_path in input_paths:
if not os.path.exists(input_path):
raise FileNotFoundError(f"File not found: {input_path}")
if os.path.isdir(input_path):
for root, _, files in os.walk(input_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(
file_path, start=os.path.commonpath(input_paths)
)
zipf.write(file_path, arcname=arcname)
else:
arcname = os.path.relpath(
input_path, start=os.path.commonpath(input_paths)
)
zipf.write(input_path, arcname=arcname)
return output_zip
class URDFGenerator(object):
def __init__(
self,
gpt_client: GPTclient,
mesh_file_list: list[str] = ["material_0.png", "material.mtl"],
prompt_template: str = None,
attrs_name: list[str] = None,
render_dir: str = "urdf_renders",
render_view_num: int = 4,
) -> None:
if mesh_file_list is None:
mesh_file_list = []
self.mesh_file_list = mesh_file_list
self.output_mesh_dir = "mesh"
self.output_render_dir = render_dir
self.gpt_client = gpt_client
self.render_view_num = render_view_num
if render_view_num == 4:
view_desc = "This is orthographic projection showing the front, left, right and back views " # noqa
else:
view_desc = "This is the rendered views "
if prompt_template is None:
prompt_template = (
view_desc
+ """of the 3D object asset,
category: {category}.
Give the category of this object asset (within 3 words),
(if category is already provided, use it directly),
accurately describe this 3D object asset (within 15 words),
and give the recommended geometric height range (unit: meter),
weight range (unit: kilogram), the average static friction
coefficient of the object relative to rubber and the average
dynamic friction coefficient of the object relative to rubber.
Return response format as shown in Example.
Example:
Category: cup
Description: shiny golden cup with floral design
Height: 0.1-0.15 m
Weight: 0.3-0.6 kg
Static friction coefficient: 1.1
Dynamic friction coefficient: 0.9
"""
)
self.prompt_template = prompt_template
if attrs_name is None:
attrs_name = [
"category",
"description",
"min_height",
"max_height",
"real_height",
"min_mass",
"max_mass",
"version",
"generate_time",
"gs_model",
]
self.attrs_name = attrs_name
def parse_response(self, response: str) -> dict[str, any]:
lines = response.split("\n")
lines = [line.strip() for line in lines if line]
category = lines[0].split(": ")[1]
description = lines[1].split(": ")[1]
min_height, max_height = map(
lambda x: float(x.strip().replace(",", "").split()[0]),
lines[2].split(": ")[1].split("-"),
)
min_mass, max_mass = map(
lambda x: float(x.strip().replace(",", "").split()[0]),
lines[3].split(": ")[1].split("-"),
)
mu1 = float(lines[4].split(": ")[1].replace(",", ""))
mu2 = float(lines[5].split(": ")[1].replace(",", ""))
return {
"category": category.lower(),
"description": description.lower(),
"min_height": round(min_height, 4),
"max_height": round(max_height, 4),
"min_mass": round(min_mass, 4),
"max_mass": round(max_mass, 4),
"mu1": round(mu1, 2),
"mu2": round(mu2, 2),
"version": VERSION,
"generate_time": datetime.now().strftime("%Y%m%d%H%M%S"),
}
def generate_urdf(
self,
input_mesh: str,
output_dir: str,
attr_dict: dict,
output_name: str = None,
) -> str:
"""Generate a URDF file for a given mesh with specified attributes.
Args:
input_mesh (str): Path to the input mesh file.
output_dir (str): Directory to store the generated URDF
and processed mesh.
attr_dict (dict): Dictionary containing attributes like height,
mass, and friction coefficients.
output_name (str, optional): Name for the generated URDF and robot.
Returns:
str: Path to the generated URDF file.
"""
# 1. Load and normalize the mesh
mesh = trimesh.load(input_mesh)
mesh_scale = np.ptp(mesh.vertices, axis=0).max()
mesh.vertices /= mesh_scale # Normalize to [-0.5, 0.5]
raw_height = np.ptp(mesh.vertices, axis=0)[1]
# 2. Scale the mesh to real height
real_height = attr_dict["real_height"]
scale = round(real_height / raw_height, 6)
mesh = mesh.apply_scale(scale)
# 3. Prepare output directories and save scaled mesh
mesh_folder = os.path.join(output_dir, self.output_mesh_dir)
os.makedirs(mesh_folder, exist_ok=True)
obj_name = os.path.basename(input_mesh)
mesh_output_path = os.path.join(mesh_folder, obj_name)
mesh.export(mesh_output_path)
# 4. Copy additional mesh files, if any
input_dir = os.path.dirname(input_mesh)
for file in self.mesh_file_list:
src_file = os.path.join(input_dir, file)
dest_file = os.path.join(mesh_folder, file)
if os.path.isfile(src_file):
shutil.copy(src_file, dest_file)
# 5. Determine output name
if output_name is None:
output_name = os.path.splitext(obj_name)[0]
# 6. Load URDF template and update attributes
robot = ET.fromstring(URDF_TEMPLATE)
robot.set("name", output_name)
link = robot.find("link")
if link is None:
raise ValueError("URDF template is missing 'link' element.")
link.set("name", output_name)
# Update visual geometry
visual = link.find("visual/geometry/mesh")
if visual is not None:
visual.set(
"filename", os.path.join(self.output_mesh_dir, obj_name)
)
visual.set("scale", "1.0 1.0 1.0")
# Update collision geometry
collision = link.find("collision/geometry/mesh")
if collision is not None:
collision.set(
"filename", os.path.join(self.output_mesh_dir, obj_name)
)
collision.set("scale", "1.0 1.0 1.0")
# Update friction coefficients
gazebo = link.find("collision/gazebo")
if gazebo is not None:
for param, key in zip(["mu1", "mu2"], ["mu1", "mu2"]):
element = gazebo.find(param)
if element is not None:
element.text = f"{attr_dict[key]:.2f}"
# Update mass
inertial = link.find("inertial/mass")
if inertial is not None:
mass_value = (attr_dict["min_mass"] + attr_dict["max_mass"]) / 2
inertial.set("value", f"{mass_value:.4f}")
# Add extra_info element to the link
extra_info = link.find("extra_info/scale")
if extra_info is not None:
extra_info.text = f"{scale:.6f}"
for key in self.attrs_name:
extra_info = link.find(f"extra_info/{key}")
if extra_info is not None and key in attr_dict:
extra_info.text = f"{attr_dict[key]}"
# 7. Write URDF to file
os.makedirs(output_dir, exist_ok=True)
urdf_path = os.path.join(output_dir, f"{output_name}.urdf")
tree = ET.ElementTree(robot)
tree.write(urdf_path, encoding="utf-8", xml_declaration=True)
logger.info(f"URDF file saved to {urdf_path}")
return urdf_path
@staticmethod
def get_attr_from_urdf(
urdf_path: str,
attr_root: str = ".//link/extra_info",
attr_name: str = "scale",
) -> float:
if not os.path.exists(urdf_path):
raise FileNotFoundError(f"URDF file not found: {urdf_path}")
mesh_scale = 1.0
tree = ET.parse(urdf_path)
root = tree.getroot()
extra_info = root.find(attr_root)
if extra_info is not None:
scale_element = extra_info.find(attr_name)
if scale_element is not None:
mesh_scale = float(scale_element.text)
return mesh_scale
@staticmethod
def add_quality_tag(
urdf_path: str, results, output_path: str = None
) -> None:
if output_path is None:
output_path = urdf_path
tree = ET.parse(urdf_path)
root = tree.getroot()
custom_data = ET.SubElement(root, "custom_data")
quality = ET.SubElement(custom_data, "quality")
for key, value in results:
checker_tag = ET.SubElement(quality, key)
checker_tag.text = str(value)
rough_string = ET.tostring(root, encoding="utf-8")
formatted_string = parseString(rough_string).toprettyxml(indent=" ")
cleaned_string = "\n".join(
[line for line in formatted_string.splitlines() if line.strip()]
)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w", encoding="utf-8") as f:
f.write(cleaned_string)
logger.info(f"URDF files saved to {output_path}")
def get_estimated_attributes(self, asset_attrs: dict):
estimated_attrs = {
"height": round(
(asset_attrs["min_height"] + asset_attrs["max_height"]) / 2, 4
),
"mass": round(
(asset_attrs["min_mass"] + asset_attrs["max_mass"]) / 2, 4
),
"mu": round((asset_attrs["mu1"] + asset_attrs["mu2"]) / 2, 4),
"category": asset_attrs["category"],
}
return estimated_attrs
def __call__(
self,
mesh_path: str,
output_root: str,
text_prompt: str = None,
category: str = "unknown",
**kwargs,
):
if text_prompt is None or len(text_prompt) == 0:
text_prompt = self.prompt_template
text_prompt = text_prompt.format(category=category.lower())
image_path = render_asset3d(
mesh_path,
output_root,
num_images=self.render_view_num,
output_subdir=self.output_render_dir,
)
# Hardcode tmp because of the openrouter can't input multi images.
if "openrouter" in self.gpt_client.endpoint:
from asset3d_gen.utils.process_media import (
combine_images_to_base64,
)
image_path = combine_images_to_base64(image_path)
response = self.gpt_client.query(text_prompt, image_path)
if response is None:
asset_attrs = {
"category": category.lower(),
"description": category.lower(),
"min_height": 1,
"max_height": 1,
"min_mass": 1,
"max_mass": 1,
"mu1": 0.8,
"mu2": 0.6,
"version": VERSION,
"generate_time": datetime.now().strftime("%Y%m%d%H%M%S"),
}
else:
asset_attrs = self.parse_response(response)
for key in self.attrs_name:
if key in kwargs:
asset_attrs[key] = kwargs[key]
asset_attrs["real_height"] = round(
(asset_attrs["min_height"] + asset_attrs["max_height"]) / 2, 4
)
self.estimated_attrs = self.get_estimated_attributes(asset_attrs)
urdf_path = self.generate_urdf(mesh_path, output_root, asset_attrs)
logger.info(f"response: {response}")
return urdf_path
if __name__ == "__main__":
urdf_gen = URDFGenerator(GPT_CLIENT, render_view_num=4)
urdf_path = urdf_gen(
mesh_path="outputs/imageto3d/cma/o5/URDF_o5/mesh/o5.obj",
output_root="outputs/test_urdf",
# category="coffee machine",
# min_height=1.0,
# max_height=1.2,
version=VERSION,
)
# zip_files(
# input_paths=[
# "scripts/apps/tmp/2umpdum3e5n/URDF_sample/mesh",
# "scripts/apps/tmp/2umpdum3e5n/URDF_sample/sample.urdf"
# ],
# output_zip="zip.zip"
# )
|