xinjie.wang
test
2e90551
raw
history blame
18 kB
import logging
import os
import struct
from dataclasses import dataclass, field
from typing import Optional, Union
import cv2
import numpy as np
import torch
from gsplat.cuda._wrapper import spherical_harmonics
from gsplat.rendering import rasterization
from plyfile import PlyData
from scipy.spatial.transform import Rotation
from torch.nn import functional as F
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
__all__ = [
"RenderResult",
"GaussianOperator",
]
def quat_mult(q1, q2):
# NOTE:
# Q1 is the quaternion that rotates the vector from the original position to the final position # noqa
# Q2 is the quaternion that been rotated
w1, x1, y1, z1 = q1.T
w2, x2, y2, z2 = q2.T
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
return torch.stack([w, x, y, z]).T
def quat_to_rotmat(quats: torch.Tensor, mode="wxyz") -> torch.Tensor:
"""Convert quaternion to rotation matrix."""
quats = F.normalize(quats, p=2, dim=-1)
if mode == "xyzw":
x, y, z, w = torch.unbind(quats, dim=-1)
elif mode == "wxyz":
w, x, y, z = torch.unbind(quats, dim=-1)
else:
raise ValueError(f"Invalid mode: {mode}.")
R = torch.stack(
[
1 - 2 * (y**2 + z**2),
2 * (x * y - w * z),
2 * (x * z + w * y),
2 * (x * y + w * z),
1 - 2 * (x**2 + z**2),
2 * (y * z - w * x),
2 * (x * z - w * y),
2 * (y * z + w * x),
1 - 2 * (x**2 + y**2),
],
dim=-1,
)
return R.reshape(quats.shape[:-1] + (3, 3))
def gamma_shs(shs: torch.Tensor, gamma: float) -> torch.Tensor:
C0 = 0.28209479177387814 # Constant for normalization in spherical harmonics # noqa
# Clip to the range [0.0, 1.0], apply gamma correction, and then un-clip back # noqa
new_shs = torch.clip(shs * C0 + 0.5, 0.0, 1.0)
new_shs = (torch.pow(new_shs, gamma) - 0.5) / C0
return new_shs
@dataclass
class RenderResult:
rgb: np.ndarray
depth: np.ndarray
opacity: np.ndarray
mask_threshold: float = 10
mask: Optional[np.ndarray] = None
rgba: Optional[np.ndarray] = None
def __post_init__(self):
if isinstance(self.rgb, torch.Tensor):
rgb = self.rgb.detach().cpu().numpy()
rgb = (rgb * 255).astype(np.uint8)
self.rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
if isinstance(self.depth, torch.Tensor):
self.depth = self.depth.detach().cpu().numpy()
if isinstance(self.opacity, torch.Tensor):
opacity = self.opacity.detach().cpu().numpy()
opacity = (opacity * 255).astype(np.uint8)
self.opacity = cv2.cvtColor(opacity, cv2.COLOR_GRAY2RGB)
mask = np.where(self.opacity > self.mask_threshold, 255, 0)
self.mask = mask[..., 0:1].astype(np.uint8)
self.rgba = np.concatenate([self.rgb, self.mask], axis=-1)
@dataclass
class GaussianBase:
_opacities: torch.Tensor
_means: torch.Tensor
_scales: torch.Tensor
_quats: torch.Tensor
_rgbs: Optional[torch.Tensor] = None
_features_dc: Optional[torch.Tensor] = None
_features_rest: Optional[torch.Tensor] = None
sh_degree: Optional[int] = 0
device: str = "cuda"
def __post_init__(self):
self.active_sh_degree: int = self.sh_degree
self.to(self.device)
def to(self, device: str) -> None:
for k, v in self.__dict__.items():
if not isinstance(v, torch.Tensor):
continue
self.__dict__[k] = v.to(device)
def get_numpy_data(self):
data = {}
for k, v in self.__dict__.items():
if not isinstance(v, torch.Tensor):
continue
data[k] = v.detach().cpu().numpy()
return data
def quat_norm(self, x: torch.Tensor) -> torch.Tensor:
return x / x.norm(dim=-1, keepdim=True)
@classmethod
def load_from_ply(
cls,
path: str,
gamma: float = 1.0,
) -> "GaussianBase":
plydata = PlyData.read(path)
xyz = torch.stack(
(
torch.tensor(plydata.elements[0]["x"], dtype=torch.float32),
torch.tensor(plydata.elements[0]["y"], dtype=torch.float32),
torch.tensor(plydata.elements[0]["z"], dtype=torch.float32),
),
dim=1,
)
opacities = torch.tensor(
plydata.elements[0]["opacity"], dtype=torch.float32
).unsqueeze(-1)
features_dc = torch.zeros((xyz.shape[0], 3), dtype=torch.float32)
features_dc[:, 0] = torch.tensor(
plydata.elements[0]["f_dc_0"], dtype=torch.float32
)
features_dc[:, 1] = torch.tensor(
plydata.elements[0]["f_dc_1"], dtype=torch.float32
)
features_dc[:, 2] = torch.tensor(
plydata.elements[0]["f_dc_2"], dtype=torch.float32
)
scale_names = [
p.name
for p in plydata.elements[0].properties
if p.name.startswith("scale_")
]
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
scales = torch.zeros(
(xyz.shape[0], len(scale_names)), dtype=torch.float32
)
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = torch.tensor(
plydata.elements[0][attr_name], dtype=torch.float32
)
rot_names = [
p.name
for p in plydata.elements[0].properties
if p.name.startswith("rot_")
]
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
rots = torch.zeros((xyz.shape[0], len(rot_names)), dtype=torch.float32)
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = torch.tensor(
plydata.elements[0][attr_name], dtype=torch.float32
)
rots = rots / torch.norm(rots, dim=-1, keepdim=True)
# extra features
extra_f_names = [
p.name
for p in plydata.elements[0].properties
if p.name.startswith("f_rest_")
]
extra_f_names = sorted(
extra_f_names, key=lambda x: int(x.split("_")[-1])
)
max_sh_degree = int(np.sqrt((len(extra_f_names) + 3) / 3) - 1)
if max_sh_degree != 0:
features_extra = torch.zeros(
(xyz.shape[0], len(extra_f_names)), dtype=torch.float32
)
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = torch.tensor(
plydata.elements[0][attr_name], dtype=torch.float32
)
features_extra = features_extra.view(
(features_extra.shape[0], 3, (max_sh_degree + 1) ** 2 - 1)
)
features_extra = features_extra.permute(0, 2, 1)
if abs(gamma - 1.0) > 1e-3:
features_dc = gamma_shs(features_dc, gamma)
features_extra[..., :] = 0.0
opacities *= 0.8
shs = torch.cat(
[
features_dc.reshape(-1, 3),
features_extra.reshape(len(features_dc), -1),
],
dim=-1,
)
else:
# sh_dim is 0, only dc features
shs = features_dc
features_extra = None
return cls(
sh_degree=max_sh_degree,
_means=xyz,
_opacities=opacities,
_rgbs=shs,
_scales=scales,
_quats=rots,
_features_dc=features_dc,
_features_rest=features_extra,
)
def save_to_ply(
self, path: str, colors: torch.Tensor = None, enable_mask: bool = False
):
os.makedirs(os.path.dirname(path), exist_ok=True)
numpy_data = self.get_numpy_data()
means = numpy_data["_means"]
scales = numpy_data["_scales"]
quats = numpy_data["_quats"]
opacities = numpy_data["_opacities"]
sh0 = numpy_data["_features_dc"]
shN = numpy_data.get("_features_rest", np.zeros((means.shape[0], 0)))
# Create a mask to identify rows with NaN or Inf in any of the numpy_data arrays # noqa
if enable_mask:
invalid_mask = (
np.isnan(means).any(axis=1)
| np.isinf(means).any(axis=1)
| np.isnan(scales).any(axis=1)
| np.isinf(scales).any(axis=1)
| np.isnan(quats).any(axis=1)
| np.isinf(quats).any(axis=1)
| np.isnan(opacities).any(axis=0)
| np.isinf(opacities).any(axis=0)
| np.isnan(sh0).any(axis=1)
| np.isinf(sh0).any(axis=1)
| np.isnan(shN).any(axis=1)
| np.isinf(shN).any(axis=1)
)
# Filter out rows with NaNs or Infs from all data arrays
means = means[~invalid_mask]
scales = scales[~invalid_mask]
quats = quats[~invalid_mask]
opacities = opacities[~invalid_mask]
sh0 = sh0[~invalid_mask]
shN = shN[~invalid_mask]
num_points = means.shape[0]
with open(path, "wb") as f:
# Write PLY header
f.write(b"ply\n")
f.write(b"format binary_little_endian 1.0\n")
f.write(f"element vertex {num_points}\n".encode())
f.write(b"property float x\n")
f.write(b"property float y\n")
f.write(b"property float z\n")
f.write(b"property float nx\n")
f.write(b"property float ny\n")
f.write(b"property float nz\n")
if colors is not None:
for j in range(colors.shape[1]):
f.write(f"property float f_dc_{j}\n".encode())
else:
for i, data in enumerate([sh0, shN]):
prefix = "f_dc" if i == 0 else "f_rest"
for j in range(data.shape[1]):
f.write(f"property float {prefix}_{j}\n".encode())
f.write(b"property float opacity\n")
for i in range(scales.shape[1]):
f.write(f"property float scale_{i}\n".encode())
for i in range(quats.shape[1]):
f.write(f"property float rot_{i}\n".encode())
f.write(b"end_header\n")
# Write vertex data
for i in range(num_points):
f.write(struct.pack("<fff", *means[i])) # x, y, z
f.write(struct.pack("<fff", 0, 0, 0)) # nx, ny, nz (zeros)
if colors is not None:
color = colors.detach().cpu().numpy()
for j in range(color.shape[1]):
f_dc = (color[i, j] - 0.5) / 0.2820947917738781
f.write(struct.pack("<f", f_dc))
else:
for data in [sh0, shN]:
for j in range(data.shape[1]):
f.write(struct.pack("<f", data[i, j]))
f.write(struct.pack("<f", opacities[i])) # opacity
for data in [scales, quats]:
for j in range(data.shape[1]):
f.write(struct.pack("<f", data[i, j]))
@dataclass
class GaussianOperator(GaussianBase):
def _compute_transform(
self,
means: torch.Tensor,
quats: torch.Tensor,
instance_pose: torch.Tensor,
):
"""Compute the transform of the GS models.
Args:
means: tensor of gs means.
quats: tensor of gs quaternions.
instance_pose: instances poses in [x y z qx qy qz qw] format.
"""
# (x y z qx qy qz qw) -> (x y z qw qx qy qz)
instance_pose = instance_pose[[0, 1, 2, 6, 3, 4, 5]]
cur_instances_quats = self.quat_norm(instance_pose[3:])
rot_cur = quat_to_rotmat(cur_instances_quats, mode="wxyz")
# update the means
num_gs = means.shape[0]
trans_per_pts = torch.stack([instance_pose[:3]] * num_gs, dim=0)
quat_per_pts = torch.stack([instance_pose[3:]] * num_gs, dim=0)
rot_per_pts = torch.stack([rot_cur] * num_gs, dim=0) # (num_gs, 3, 3)
# update the means
cur_means = (
torch.bmm(rot_per_pts, means.unsqueeze(-1)).squeeze(-1)
+ trans_per_pts
)
# update the quats
_quats = self.quat_norm(quats)
cur_quats = quat_mult(quat_per_pts, _quats)
return cur_means, cur_quats
def get_gaussians(
self,
c2w: torch.Tensor = None,
instance_pose: torch.Tensor = None,
apply_activate: bool = False,
) -> "GaussianBase":
"""Get Gaussian data under the given instance_pose."""
if c2w is None:
c2w = torch.eye(4).to(self.device)
if instance_pose is not None:
# compute the transformed gs means and quats
world_means, world_quats = self._compute_transform(
self._means, self._quats, instance_pose.float().to(self.device)
)
else:
world_means, world_quats = self._means, self._quats
# get colors of gaussians
if self._features_rest is not None:
colors = torch.cat(
(self._features_dc[:, None, :], self._features_rest), dim=1
)
else:
colors = self._features_dc[:, None, :]
if self.sh_degree > 0:
viewdirs = world_means.detach() - c2w[..., :3, 3] # (N, 3)
viewdirs = viewdirs / viewdirs.norm(dim=-1, keepdim=True)
rgbs = spherical_harmonics(self.sh_degree, viewdirs, colors)
rgbs = torch.clamp(rgbs + 0.5, 0.0, 1.0)
else:
rgbs = torch.sigmoid(colors[:, 0, :])
gs_dict = dict(
_means=world_means,
_opacities=(
torch.sigmoid(self._opacities)
if apply_activate
else self._opacities
),
_rgbs=rgbs,
_scales=(
torch.exp(self._scales) if apply_activate else self._scales
),
_quats=self.quat_norm(world_quats),
_features_dc=self._features_dc,
_features_rest=self._features_rest,
sh_degree=self.sh_degree,
)
return GaussianOperator(**gs_dict)
def rescale(self, scale: float):
if scale != 1.0:
self._means *= scale
self._scales += torch.log(self._scales.new_tensor(scale))
def set_scale_by_height(self, real_height: float) -> None:
def _ptp(tensor, dim):
val = tensor.max(dim=dim).values - tensor.min(dim=dim).values
return val.tolist()
xyz_scale = max(_ptp(self._means, dim=0))
self.rescale(1 / (xyz_scale + 1e-6)) # Normalize to [-0.5, 0.5]
raw_height = _ptp(self._means, dim=0)[1]
scale = real_height / raw_height
self.rescale(scale)
return
@staticmethod
def resave_ply(
in_ply: str,
out_ply: str,
real_height: float = None,
instance_pose: np.ndarray = None,
sh_degree: int = 0,
) -> None:
gs_model = GaussianOperator.load_from_ply(in_ply, sh_degree)
if instance_pose is not None:
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
if real_height is not None:
gs_model.set_scale_by_height(real_height)
gs_model.save_to_ply(out_ply)
return
@staticmethod
def trans_to_quatpose(
rot_matrix: list[list[float]],
trans_matrix: list[float] = [0, 0, 0],
) -> torch.Tensor:
if isinstance(rot_matrix, list):
rot_matrix = np.array(rot_matrix)
rot = Rotation.from_matrix(rot_matrix)
qx, qy, qz, qw = rot.as_quat()
instance_pose = torch.tensor([*trans_matrix, qx, qy, qz, qw])
return instance_pose
def render(
self,
c2w: torch.Tensor,
Ks: torch.Tensor,
image_width: int,
image_height: int,
) -> RenderResult:
gs = self.get_gaussians(c2w, apply_activate=True)
renders, alphas, _ = rasterization(
means=gs._means,
quats=gs._quats,
scales=gs._scales,
opacities=gs._opacities.squeeze(),
colors=gs._rgbs,
viewmats=torch.linalg.inv(c2w)[None, ...],
Ks=Ks[None, ...],
width=image_width,
height=image_height,
packed=False,
absgrad=True,
sparse_grad=False,
# rasterize_mode="classic",
rasterize_mode="antialiased",
**{
"near_plane": 0.01,
"far_plane": 1000000000,
"radius_clip": 0.0,
"render_mode": "RGB+ED",
},
)
renders = renders[0]
alphas = alphas[0].squeeze(-1)
assert renders.shape[-1] == 4, f"Must render rgb, depth and alpha"
rendered_rgb, rendered_depth = torch.split(renders, [3, 1], dim=-1)
return RenderResult(
torch.clamp(rendered_rgb, min=0, max=1),
rendered_depth,
alphas[..., None],
)
if __name__ == "__main__":
input_gs = "outputs/test/debug.ply"
output_gs = "./debug_v3.ply"
gs_model: GaussianOperator = GaussianOperator.load_from_ply(input_gs)
# 绕 x 轴旋转 180°
R_x = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
instance_pose = gs_model.trans_to_quatpose(R_x)
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
gs_model.rescale(2)
gs_model.set_scale_by_height(1.3)
gs_model.save_to_ply(output_gs)