xinjie.wang
update
146eff7
raw
history blame
4.61 kB
import argparse
import logging
import math
import os
import spaces
import cv2
import numpy as np
import torch
from tqdm import tqdm
from asset3d_gen.data.utils import (
CameraSetting,
init_kal_camera,
normalize_vertices_array,
)
from asset3d_gen.models.gs_model import GaussianOperator
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Render GS color images")
parser.add_argument(
"--input_gs", type=str, help="Input render GS.ply path."
)
parser.add_argument(
"--output_path",
type=str,
help="Output grid image path for rendered GS color images.",
)
parser.add_argument(
"--num_images", type=int, default=6, help="Number of images to render."
)
parser.add_argument(
"--elevation",
type=float,
nargs="+",
default=[20.0, -10.0],
help="Elevation angles for the camera (default: [20.0, -10.0])",
)
parser.add_argument(
"--distance",
type=float,
default=5,
help="Camera distance (default: 5)",
)
parser.add_argument(
"--resolution_hw",
type=int,
nargs=2,
default=(512, 512),
help="Resolution of the output images (default: (512, 512))",
)
parser.add_argument(
"--fov",
type=float,
default=30,
help="Field of view in degrees (default: 30)",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda"],
default="cuda",
help="Device to run on (default: `cuda`)",
)
parser.add_argument(
"--image_size",
type=int,
default=512,
help="Output image size for single view in color grid (default: 512)",
)
args = parser.parse_args()
return args
def load_gs_model(
input_gs: str, pre_quat: list[float] = [0.0, 0.7071, 0.0, -0.7071]
) -> GaussianOperator:
gs_model = GaussianOperator.load_from_ply(input_gs)
# Normalize vertices to [-1, 1], center to (0, 0, 0).
_, scale, center = normalize_vertices_array(gs_model._means)
scale, center = float(scale), center.tolist()
transpose = [*[-v for v in center], *pre_quat]
instance_pose = torch.tensor(transpose).to(gs_model.device)
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
gs_model.rescale(scale)
return gs_model
@spaces.GPU
def entrypoint(input_gs: str = None, output_path: str = None) -> None:
args = parse_args()
if isinstance(input_gs, str):
args.input_gs = input_gs
if isinstance(output_path, str):
args.output_path = output_path
# Setup camera parameters
camera_params = CameraSetting(
num_images=args.num_images,
elevation=args.elevation,
distance=args.distance,
resolution_hw=args.resolution_hw,
fov=math.radians(args.fov),
device=args.device,
)
camera = init_kal_camera(camera_params)
matrix_mv = camera.view_matrix() # (n_cam 4 4) world2cam
matrix_mv[:, :3, 3] = -matrix_mv[:, :3, 3]
w2cs = matrix_mv.to(camera_params.device)
c2ws = [torch.linalg.inv(matrix) for matrix in w2cs]
Ks = torch.tensor(camera_params.Ks).to(camera_params.device)
# Load GS model and normalize.
gs_model = load_gs_model(args.input_gs, pre_quat=[0.0, 0.0, 1.0, 0.0])
# Render GS color images.
images = []
for idx in tqdm(range(len(c2ws)), desc="Rendering GS"):
result = gs_model.render(
c2ws[idx],
Ks=Ks,
image_width=camera_params.resolution_hw[1],
image_height=camera_params.resolution_hw[0],
)
color = cv2.resize(
result.rgba,
(args.image_size, args.image_size),
interpolation=cv2.INTER_AREA,
)
images.append(color)
# Cat color images into grid image and save.
select_idxs = [[0, 2, 1], [5, 4, 3]] # fix order for 6 views
grid_image = []
for row_idxs in select_idxs:
row_image = []
for row_idx in row_idxs:
row_image.append(images[row_idx])
row_image = np.concatenate(row_image, axis=1)
grid_image.append(row_image)
grid_image = np.concatenate(grid_image, axis=0)
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
cv2.imwrite(args.output_path, grid_image)
logger.info(f"Saved grid image to {args.output_path}")
if __name__ == "__main__":
entrypoint()