Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from typing import Union | |
import spaces | |
import cv2 | |
import numpy as np | |
import torch | |
from diffusers import ( | |
EulerAncestralDiscreteScheduler, | |
StableDiffusionInstructPix2PixPipeline, | |
) | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
from asset3d_gen.models.segment_model import RembgRemover | |
__all__ = [ | |
"DelightingModel", | |
] | |
class DelightingModel(object): | |
def __init__( | |
self, | |
model_path: str = None, | |
num_infer_step: int = 50, | |
mask_erosion_size: int = 3, | |
image_guide_scale: float = 1.5, | |
text_guide_scale: float = 1.0, | |
device: str = "cuda", | |
seed: int = 0, | |
) -> None: | |
self.image_guide_scale = image_guide_scale | |
self.text_guide_scale = text_guide_scale | |
self.num_infer_step = num_infer_step | |
self.mask_erosion_size = mask_erosion_size | |
self.kernel = np.ones( | |
(self.mask_erosion_size, self.mask_erosion_size), np.uint8 | |
) | |
self.seed = seed | |
self.device = device | |
self.bg_remover = RembgRemover() | |
if model_path is None: | |
suffix = "hunyuan3d-delight-v2-0" | |
model_path = snapshot_download( | |
repo_id="tencent/Hunyuan3D-2", allow_patterns=f"{suffix}/*" | |
) | |
model_path = os.path.join(model_path, suffix) | |
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config | |
) | |
pipeline.set_progress_bar_config(disable=True) | |
pipeline.to(self.device, torch.float16) | |
# pipeline.enable_model_cpu_offload() | |
# pipeline.enable_xformers_memory_efficient_attention() | |
self.pipeline = pipeline | |
def recenter_image( | |
self, image: Image.Image, border_ratio: float = 0.2 | |
) -> Image.Image: | |
if image.mode == "RGB": | |
return image | |
elif image.mode == "L": | |
image = image.convert("RGB") | |
return image | |
alpha_channel = np.array(image)[:, :, 3] | |
non_zero_indices = np.argwhere(alpha_channel > 0) | |
if non_zero_indices.size == 0: | |
raise ValueError("Image is fully transparent") | |
min_row, min_col = non_zero_indices.min(axis=0) | |
max_row, max_col = non_zero_indices.max(axis=0) | |
cropped_image = image.crop( | |
(min_col, min_row, max_col + 1, max_row + 1) | |
) | |
width, height = cropped_image.size | |
border_width = int(width * border_ratio) | |
border_height = int(height * border_ratio) | |
new_width = width + 2 * border_width | |
new_height = height + 2 * border_height | |
square_size = max(new_width, new_height) | |
new_image = Image.new( | |
"RGBA", (square_size, square_size), (255, 255, 255, 0) | |
) | |
paste_x = (square_size - new_width) // 2 + border_width | |
paste_y = (square_size - new_height) // 2 + border_height | |
new_image.paste(cropped_image, (paste_x, paste_y)) | |
return new_image | |
def __call__( | |
self, | |
image: Union[str, np.ndarray, Image.Image], | |
preprocess: bool = False, | |
target_wh: tuple[int, int] = None, | |
) -> Image.Image: | |
if isinstance(image, str): | |
image = Image.open(image) | |
elif isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
if preprocess: | |
image = self.bg_remover(image) | |
image = self.recenter_image(image) | |
if target_wh is not None: | |
image = image.resize(target_wh) | |
else: | |
target_wh = image.size | |
image_array = np.array(image) | |
assert image_array.shape[-1] == 4, "Image must have alpha channel" | |
raw_alpha_channel = image_array[:, :, 3] | |
alpha_channel = cv2.erode(raw_alpha_channel, self.kernel, iterations=1) | |
image_array[alpha_channel == 0, :3] = 255 # must be white background | |
image_array[:, :, 3] = alpha_channel | |
image = self.pipeline( | |
prompt="", | |
image=Image.fromarray(image_array).convert("RGB"), | |
generator=torch.manual_seed(self.seed), | |
num_inference_steps=self.num_infer_step, | |
image_guidance_scale=self.image_guide_scale, | |
guidance_scale=self.text_guide_scale, | |
).images[0] | |
alpha_channel = Image.fromarray(alpha_channel) | |
rgba_image = image.convert("RGBA").resize(target_wh) | |
rgba_image.putalpha(alpha_channel) | |
return rgba_image | |
if __name__ == "__main__": | |
delighting_model = DelightingModel( | |
# model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa | |
) | |
image_path = "scripts/apps/assets/example_image/room_bottle_002.jpeg" | |
image = delighting_model( | |
image_path, preprocess=True, target_wh=(512, 512) | |
) # noqa | |
image.save("delight.png") | |
# image_path = "asset3d_gen/scripts/test_robot.png" | |
# image = delighting_model(image_path) | |
# image.save("delighting_image_a2.png") | |