ImgRoboAssetGen / asset3d_gen /validators /aesthetic_predictor.py
xinjie.wang
update
55ed985
import os
import clip
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
from PIL import Image
class AestheticPredictor:
"""Aesthetic Score Predictor.
Args:
clip_model_dir (str): Path to the directory of the CLIP model.
sac_model_path (str): Path to the pre-trained SAC model.
device (str): Device to use for computation ("cuda" or "cpu").
"""
def __init__(self, clip_model_dir=None, sac_model_path=None, device=None):
self.device = device or (
"cuda" if torch.cuda.is_available() else "cpu"
)
if clip_model_dir is None:
model_path = snapshot_download(
repo_id="xinjjj/RoboAssetGen", allow_patterns="aesthetic/*"
)
suffix = "aesthetic"
model_path = snapshot_download(
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
)
clip_model_dir = os.path.join(model_path, suffix)
if sac_model_path is None:
model_path = snapshot_download(
repo_id="xinjjj/RoboAssetGen", allow_patterns="aesthetic/*"
)
suffix = "aesthetic"
model_path = snapshot_download(
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
)
sac_model_path = os.path.join(
model_path, suffix, "sac+logos+ava1-l14-linearMSE.pth"
)
self.clip_model, self.preprocess = self._load_clip_model(
clip_model_dir
)
self.sac_model = self._load_sac_model(sac_model_path, input_size=768)
class MLP(pl.LightningModule): # noqa
def __init__(self, input_size):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_size, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
def forward(self, x):
return self.layers(x)
@staticmethod
def normalized(a, axis=-1, order=2):
"""Normalize the array to unit norm."""
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
def _load_clip_model(self, model_dir: str, model_name: str = "ViT-L/14"):
"""Load the CLIP model."""
model, preprocess = clip.load(
model_name, download_root=model_dir, device=self.device
)
return model, preprocess
def _load_sac_model(self, model_path, input_size):
"""Load the SAC model."""
model = self.MLP(input_size)
ckpt = torch.load(model_path)
model.load_state_dict(ckpt)
model.to(self.device)
model.eval()
return model
def predict(self, image_path):
"""Predict the aesthetic score for a given image.
Args:
image_path (str): Path to the image file.
Returns:
float: Predicted aesthetic score.
"""
pil_image = Image.open(image_path)
image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
with torch.no_grad():
# Extract CLIP features
image_features = self.clip_model.encode_image(image)
# Normalize features
normalized_features = self.normalized(
image_features.cpu().detach().numpy()
)
# Predict score
prediction = self.sac_model(
torch.from_numpy(normalized_features)
.type(torch.FloatTensor)
.to(self.device)
)
return prediction.item()
if __name__ == "__main__":
# Configuration
img_path = "/home/users/xinjie.wang/xinjie/asset3d-gen/outputs/imageto3d/demo_objects/bed/sample_0/sample_0_raw.png" # noqa
# clip_model_dir = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/clip" # noqa
# sac_model_path = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/sac/sac+logos+ava1-l14-linearMSE.pth" # noqa
# Initialize the predictor
predictor = AestheticPredictor()
# Predict the aesthetic score
score = predictor.predict(img_path)
print("Aesthetic score predicted by the model:", score)