Spaces:
Running
Running
from core.model_runtime.entities.model_entities import DefaultParameterName | |
PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = { | |
DefaultParameterName.TEMPERATURE: { | |
'label': { | |
'en_US': 'Temperature', | |
'zh_Hans': '温度', | |
}, | |
'type': 'float', | |
'help': { | |
'en_US': 'Controls randomness. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions.', | |
'zh_Hans': '温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。较高的温度会导致更多的随机完成。', | |
}, | |
'required': False, | |
'default': 0.0, | |
'min': 0.0, | |
'max': 1.0, | |
'precision': 2, | |
}, | |
DefaultParameterName.TOP_P: { | |
'label': { | |
'en_US': 'Top P', | |
'zh_Hans': 'Top P', | |
}, | |
'type': 'float', | |
'help': { | |
'en_US': 'Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered.', | |
'zh_Hans': '通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。', | |
}, | |
'required': False, | |
'default': 1.0, | |
'min': 0.0, | |
'max': 1.0, | |
'precision': 2, | |
}, | |
DefaultParameterName.PRESENCE_PENALTY: { | |
'label': { | |
'en_US': 'Presence Penalty', | |
'zh_Hans': '存在惩罚', | |
}, | |
'type': 'float', | |
'help': { | |
'en_US': 'Applies a penalty to the log-probability of tokens already in the text.', | |
'zh_Hans': '对文本中已有的标记的对数概率施加惩罚。', | |
}, | |
'required': False, | |
'default': 0.0, | |
'min': 0.0, | |
'max': 1.0, | |
'precision': 2, | |
}, | |
DefaultParameterName.FREQUENCY_PENALTY: { | |
'label': { | |
'en_US': 'Frequency Penalty', | |
'zh_Hans': '频率惩罚', | |
}, | |
'type': 'float', | |
'help': { | |
'en_US': 'Applies a penalty to the log-probability of tokens that appear in the text.', | |
'zh_Hans': '对文本中出现的标记的对数概率施加惩罚。', | |
}, | |
'required': False, | |
'default': 0.0, | |
'min': 0.0, | |
'max': 1.0, | |
'precision': 2, | |
}, | |
DefaultParameterName.MAX_TOKENS: { | |
'label': { | |
'en_US': 'Max Tokens', | |
'zh_Hans': '最大标记', | |
}, | |
'type': 'int', | |
'help': { | |
'en_US': 'Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.', | |
'zh_Hans': '指定生成结果长度的上限。如果生成结果截断,可以调大该参数。', | |
}, | |
'required': False, | |
'default': 64, | |
'min': 1, | |
'max': 2048, | |
'precision': 0, | |
}, | |
DefaultParameterName.RESPONSE_FORMAT: { | |
'label': { | |
'en_US': 'Response Format', | |
'zh_Hans': '回复格式', | |
}, | |
'type': 'string', | |
'help': { | |
'en_US': 'Set a response format, ensure the output from llm is a valid code block as possible, such as JSON, XML, etc.', | |
'zh_Hans': '设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等', | |
}, | |
'required': False, | |
'options': ['JSON', 'XML'], | |
} | |
} |