|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import importlib.metadata |
|
import tempfile |
|
import unittest |
|
|
|
from packaging import version |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
pipeline, |
|
) |
|
from transformers.testing_utils import ( |
|
is_bitsandbytes_available, |
|
is_torch_available, |
|
require_accelerate, |
|
require_bitsandbytes, |
|
require_torch, |
|
require_torch_gpu, |
|
require_torch_multi_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
def get_some_linear_layer(model): |
|
if model.config.model_type == "gpt2": |
|
return model.transformer.h[0].mlp.c_fc |
|
elif model.config.model_type == "opt": |
|
try: |
|
return model.decoder.layers[0].fc1 |
|
except AttributeError: |
|
|
|
return model.model.decoder.layers[0].fc1 |
|
else: |
|
return model.transformer.h[0].mlp.dense_4h_to_h |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
import torch.nn as nn |
|
|
|
class LoRALayer(nn.Module): |
|
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" |
|
|
|
def __init__(self, module: nn.Module, rank: int): |
|
super().__init__() |
|
self.module = module |
|
self.adapter = nn.Sequential( |
|
nn.Linear(module.in_features, rank, bias=False), |
|
nn.Linear(rank, module.out_features, bias=False), |
|
) |
|
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 |
|
nn.init.normal_(self.adapter[0].weight, std=small_std) |
|
nn.init.zeros_(self.adapter[1].weight) |
|
self.adapter.to(module.weight.device) |
|
|
|
def forward(self, input, *args, **kwargs): |
|
return self.module(input, *args, **kwargs) + self.adapter(input) |
|
|
|
|
|
if is_bitsandbytes_available(): |
|
import bitsandbytes as bnb |
|
|
|
|
|
@require_bitsandbytes |
|
@require_accelerate |
|
@require_torch |
|
@require_torch_gpu |
|
@slow |
|
class Base4bitTest(unittest.TestCase): |
|
|
|
|
|
|
|
|
|
model_name = "bigscience/bloom-1b7" |
|
|
|
|
|
EXPECTED_RELATIVE_DIFFERENCE = ( |
|
2.109659552692574 |
|
) |
|
|
|
input_text = "Hello my name is" |
|
EXPECTED_OUTPUTS = set() |
|
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") |
|
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") |
|
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") |
|
MAX_NEW_TOKENS = 10 |
|
|
|
def setUp(self): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
|
|
|
|
class Bnb4BitTest(Base4bitTest): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
|
|
self.model_fp16 = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, torch_dtype=torch.float16, device_map="auto" |
|
) |
|
self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
del self.model_fp16 |
|
del self.model_4bit |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_quantization_num_parameters(self): |
|
r""" |
|
Test if the number of returned parameters is correct |
|
|
|
See: https://github.com/huggingface/transformers/issues/25978 |
|
""" |
|
num_params_4bit = self.model_4bit.num_parameters() |
|
num_params_fp16 = self.model_fp16.num_parameters() |
|
|
|
self.assertEqual(num_params_4bit, num_params_fp16) |
|
|
|
def test_quantization_config_json_serialization(self): |
|
r""" |
|
A simple test to check if the quantization config is correctly serialized and deserialized |
|
""" |
|
config = self.model_4bit.config |
|
|
|
self.assertTrue(hasattr(config, "quantization_config")) |
|
|
|
_ = config.to_dict() |
|
_ = config.to_diff_dict() |
|
|
|
_ = config.to_json_string() |
|
|
|
def test_memory_footprint(self): |
|
r""" |
|
A simple test to check if the model conversion has been done correctly by checking on the |
|
memory footprint of the converted model and the class type of the linear layers of the converted models |
|
""" |
|
from bitsandbytes.nn import Params4bit |
|
|
|
mem_fp16 = self.model_fp16.get_memory_footprint() |
|
mem_4bit = self.model_4bit.get_memory_footprint() |
|
|
|
self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE) |
|
linear = get_some_linear_layer(self.model_4bit) |
|
self.assertTrue(linear.weight.__class__ == Params4bit) |
|
|
|
def test_original_dtype(self): |
|
r""" |
|
A simple test to check if the model succesfully stores the original dtype |
|
""" |
|
self.assertTrue(hasattr(self.model_4bit.config, "_pre_quantization_dtype")) |
|
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) |
|
self.assertTrue(self.model_4bit.config._pre_quantization_dtype == torch.float16) |
|
|
|
def test_linear_are_4bit(self): |
|
r""" |
|
A simple test to check if the model conversion has been done correctly by checking on the |
|
memory footprint of the converted model and the class type of the linear layers of the converted models |
|
""" |
|
from transformers import T5PreTrainedModel |
|
|
|
self.model_fp16.get_memory_footprint() |
|
self.model_4bit.get_memory_footprint() |
|
|
|
for name, module in self.model_4bit.named_modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: |
|
|
|
self.assertTrue(module.weight.dtype == torch.uint8) |
|
|
|
def test_rwkv_4bit(self): |
|
r""" |
|
A simple test to check if 4-bit RWKV inference works as expected. |
|
""" |
|
model_id = "RWKV/rwkv-4-169m-pile" |
|
|
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) |
|
tok = AutoTokenizer.from_pretrained(model_id) |
|
|
|
text = "Hello my name is" |
|
input_ids = tok.encode(text, return_tensors="pt").to(0) |
|
|
|
_ = model.generate(input_ids, max_new_tokens=30) |
|
|
|
def test_generate_quality(self): |
|
r""" |
|
Test the generation quality of the quantized model and see that we are matching the expected output. |
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get |
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. |
|
""" |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) |
|
|
|
def test_generate_quality_config(self): |
|
r""" |
|
Test that loading the model with the config is equivalent |
|
""" |
|
bnb_config = BitsAndBytesConfig() |
|
bnb_config.load_in_4bit = True |
|
|
|
model_4bit_from_config = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, quantization_config=bnb_config, device_map="auto" |
|
) |
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
output_sequences = model_4bit_from_config.generate( |
|
input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 |
|
) |
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) |
|
|
|
def test_device_and_dtype_assignment(self): |
|
r""" |
|
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. |
|
Checks also if other models are casted correctly. |
|
""" |
|
with self.assertRaises(ValueError): |
|
|
|
self.model_4bit.to("cpu") |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_4bit.to(torch.float16) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_4bit.to(torch.device("cuda:0")) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_4bit.float() |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_4bit.half() |
|
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
self.model_fp16 = self.model_fp16.to(torch.float32) |
|
_ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
|
|
_ = self.model_fp16.to("cpu") |
|
|
|
|
|
_ = self.model_fp16.half() |
|
|
|
|
|
_ = self.model_fp16.float() |
|
|
|
def test_fp32_4bit_conversion(self): |
|
r""" |
|
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. |
|
""" |
|
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_4bit=True, device_map="auto") |
|
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) |
|
|
|
|
|
@require_bitsandbytes |
|
@require_accelerate |
|
@require_torch |
|
@require_torch_gpu |
|
@slow |
|
class Bnb4BitT5Test(unittest.TestCase): |
|
@classmethod |
|
def setUpClass(cls): |
|
cls.model_name = "google-t5/t5-small" |
|
cls.dense_act_model_name = "google/flan-t5-small" |
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) |
|
cls.input_text = "Translate in German: Hello, my dog is cute" |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_inference_without_keep_in_fp32(self): |
|
r""" |
|
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. |
|
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test |
|
both cases. |
|
""" |
|
from transformers import T5ForConditionalGeneration |
|
|
|
modules = T5ForConditionalGeneration._keep_in_fp32_modules |
|
T5ForConditionalGeneration._keep_in_fp32_modules = None |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained( |
|
self.dense_act_model_name, load_in_4bit=True, device_map="auto" |
|
) |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
T5ForConditionalGeneration._keep_in_fp32_modules = modules |
|
|
|
def test_inference_with_keep_in_fp32(self): |
|
r""" |
|
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. |
|
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test |
|
both cases. |
|
""" |
|
from transformers import T5ForConditionalGeneration |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") |
|
|
|
|
|
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit)) |
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained( |
|
self.dense_act_model_name, load_in_4bit=True, device_map="auto" |
|
) |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
|
|
class Classes4BitModelTest(Base4bitTest): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
self.model_name = "bigscience/bloom-560m" |
|
self.seq_to_seq_name = "google-t5/t5-small" |
|
|
|
|
|
|
|
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") |
|
|
|
self.sequence_model = AutoModelForSequenceClassification.from_pretrained( |
|
self.model_name, load_in_4bit=True, device_map="auto" |
|
) |
|
|
|
self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") |
|
|
|
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( |
|
self.seq_to_seq_name, load_in_4bit=True, device_map="auto" |
|
) |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
del self.base_model |
|
del self.sequence_model |
|
del self.model_4bit |
|
del self.seq_to_seq_model |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_correct_head_class(self): |
|
r""" |
|
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) |
|
are kept in their native class. |
|
""" |
|
from bitsandbytes.nn import Params4bit |
|
|
|
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit) |
|
|
|
|
|
self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter) |
|
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) |
|
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) |
|
|
|
|
|
class Pipeline4BitTest(Base4bitTest): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
del self.pipe |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_pipeline(self): |
|
r""" |
|
The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since |
|
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything |
|
on pipline. |
|
""" |
|
|
|
self.pipe = pipeline( |
|
"text-generation", |
|
model=self.model_name, |
|
model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16}, |
|
max_new_tokens=self.MAX_NEW_TOKENS, |
|
) |
|
|
|
|
|
pipeline_output = self.pipe(self.input_text) |
|
self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) |
|
|
|
|
|
@require_torch_multi_gpu |
|
class Bnb4bitTestMultiGpu(Base4bitTest): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def test_multi_gpu_loading(self): |
|
r""" |
|
This tests that the model has been loaded and can be used correctly on a multi-GPU setup. |
|
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice |
|
""" |
|
|
|
model_parallel = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, load_in_4bit=True, device_map="balanced" |
|
) |
|
|
|
|
|
self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) |
|
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
|
|
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) |
|
|
|
|
|
class Bnb4BitTestTraining(Base4bitTest): |
|
def setUp(self): |
|
self.model_name = "facebook/opt-350m" |
|
super().setUp() |
|
|
|
def test_training(self): |
|
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): |
|
return |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True) |
|
|
|
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) |
|
|
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
if param.ndim == 1: |
|
|
|
param.data = param.data.to(torch.float32) |
|
|
|
|
|
for _, module in model.named_modules(): |
|
if "OPTAttention" in repr(type(module)): |
|
module.q_proj = LoRALayer(module.q_proj, rank=16) |
|
module.k_proj = LoRALayer(module.k_proj, rank=16) |
|
module.v_proj = LoRALayer(module.v_proj, rank=16) |
|
|
|
|
|
batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
out = model.forward(**batch) |
|
out.logits.norm().backward() |
|
|
|
for module in model.modules(): |
|
if isinstance(module, LoRALayer): |
|
self.assertTrue(module.adapter[1].weight.grad is not None) |
|
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) |
|
elif isinstance(module, nn.Embedding): |
|
self.assertTrue(module.weight.grad is None) |
|
|
|
|
|
class Bnb4BitGPT2Test(Bnb4BitTest): |
|
model_name = "openai-community/gpt2-xl" |
|
EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187 |
|
|
|
|
|
@require_bitsandbytes |
|
@require_accelerate |
|
@require_torch |
|
@require_torch_gpu |
|
@slow |
|
class BaseSerializationTest(unittest.TestCase): |
|
model_name = "facebook/opt-125m" |
|
input_text = "Mars colonists' favorite meals are" |
|
|
|
def tearDown(self): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True): |
|
r""" |
|
Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default. |
|
See ExtendedSerializationTest class for more params combinations. |
|
""" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
|
|
self.quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type=quant_type, |
|
bnb_4bit_use_double_quant=double_quant, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
model_0 = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
quantization_config=self.quantization_config, |
|
device_map=torch_device, |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization) |
|
|
|
config = AutoConfig.from_pretrained(tmpdirname) |
|
self.assertTrue(hasattr(config, "quantization_config")) |
|
|
|
model_1 = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) |
|
|
|
|
|
linear = get_some_linear_layer(model_1) |
|
self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) |
|
self.assertTrue(hasattr(linear.weight, "quant_state")) |
|
self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState) |
|
|
|
|
|
self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2) |
|
|
|
|
|
d0 = dict(model_0.named_parameters()) |
|
d1 = dict(model_1.named_parameters()) |
|
self.assertTrue(d0.keys() == d1.keys()) |
|
|
|
for k in d0.keys(): |
|
self.assertTrue(d0[k].shape == d1[k].shape) |
|
self.assertTrue(d0[k].device.type == d1[k].device.type) |
|
self.assertTrue(d0[k].device == d1[k].device) |
|
self.assertTrue(d0[k].dtype == d1[k].dtype) |
|
self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device))) |
|
|
|
if isinstance(d0[k], bnb.nn.modules.Params4bit): |
|
for v0, v1 in zip( |
|
d0[k].quant_state.as_dict().values(), |
|
d1[k].quant_state.as_dict().values(), |
|
): |
|
if isinstance(v0, torch.Tensor): |
|
self.assertTrue(torch.equal(v0, v1.to(v0.device))) |
|
else: |
|
self.assertTrue(v0 == v1) |
|
|
|
|
|
encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) |
|
out_0 = model_0(**encoded_input) |
|
out_1 = model_1(**encoded_input) |
|
self.assertTrue(torch.equal(out_0["logits"], out_1["logits"])) |
|
|
|
|
|
encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) |
|
output_sequences_0 = model_0.generate(**encoded_input, max_new_tokens=10) |
|
output_sequences_1 = model_1.generate(**encoded_input, max_new_tokens=10) |
|
|
|
def _decode(token): |
|
return tokenizer.decode(token, skip_special_tokens=True) |
|
|
|
self.assertEqual( |
|
[_decode(x) for x in output_sequences_0], |
|
[_decode(x) for x in output_sequences_1], |
|
) |
|
|
|
|
|
class ExtendedSerializationTest(BaseSerializationTest): |
|
""" |
|
tests more combinations of parameters |
|
""" |
|
|
|
def test_nf4_single_unsafe(self): |
|
self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False) |
|
|
|
def test_nf4_single_safe(self): |
|
self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True) |
|
|
|
def test_nf4_double_unsafe(self): |
|
self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False) |
|
|
|
|
|
|
|
def test_fp4_single_unsafe(self): |
|
self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False) |
|
|
|
def test_fp4_single_safe(self): |
|
self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True) |
|
|
|
def test_fp4_double_unsafe(self): |
|
self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False) |
|
|
|
def test_fp4_double_safe(self): |
|
self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True) |
|
|
|
|
|
class BloomSerializationTest(BaseSerializationTest): |
|
""" |
|
default BaseSerializationTest config tested with Bloom family model |
|
""" |
|
|
|
model_name = "bigscience/bloom-560m" |
|
|
|
|
|
class GPTSerializationTest(BaseSerializationTest): |
|
""" |
|
default BaseSerializationTest config tested with GPT family model |
|
""" |
|
|
|
model_name = "openai-community/gpt2-xl" |
|
|
|
|
|
@require_bitsandbytes |
|
@require_accelerate |
|
@require_torch_gpu |
|
@slow |
|
class Bnb4BitTestBasicConfigTest(unittest.TestCase): |
|
def test_load_in_4_and_8_bit_fails(self): |
|
with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): |
|
AutoModelForCausalLM.from_pretrained("facebook/opt-125m", load_in_4bit=True, load_in_8bit=True) |
|
|
|
def test_set_load_in_8_bit(self): |
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True) |
|
with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): |
|
quantization_config.load_in_8bit = True |
|
|