|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import io |
|
import unittest |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
from transformers import AlbertForMaskedLM |
|
from transformers.testing_utils import require_torch |
|
from transformers.utils import ModelOutput, is_torch_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2 |
|
|
|
|
|
@dataclass |
|
class ModelOutputTest(ModelOutput): |
|
a: float |
|
b: Optional[float] = None |
|
c: Optional[float] = None |
|
|
|
|
|
class ModelOutputTester(unittest.TestCase): |
|
def test_get_attributes(self): |
|
x = ModelOutputTest(a=30) |
|
self.assertEqual(x.a, 30) |
|
self.assertIsNone(x.b) |
|
self.assertIsNone(x.c) |
|
with self.assertRaises(AttributeError): |
|
_ = x.d |
|
|
|
def test_index_with_ints_and_slices(self): |
|
x = ModelOutputTest(a=30, b=10) |
|
self.assertEqual(x[0], 30) |
|
self.assertEqual(x[1], 10) |
|
self.assertEqual(x[:2], (30, 10)) |
|
self.assertEqual(x[:], (30, 10)) |
|
|
|
x = ModelOutputTest(a=30, c=10) |
|
self.assertEqual(x[0], 30) |
|
self.assertEqual(x[1], 10) |
|
self.assertEqual(x[:2], (30, 10)) |
|
self.assertEqual(x[:], (30, 10)) |
|
|
|
def test_index_with_strings(self): |
|
x = ModelOutputTest(a=30, b=10) |
|
self.assertEqual(x["a"], 30) |
|
self.assertEqual(x["b"], 10) |
|
with self.assertRaises(KeyError): |
|
_ = x["c"] |
|
|
|
x = ModelOutputTest(a=30, c=10) |
|
self.assertEqual(x["a"], 30) |
|
self.assertEqual(x["c"], 10) |
|
with self.assertRaises(KeyError): |
|
_ = x["b"] |
|
|
|
def test_dict_like_properties(self): |
|
x = ModelOutputTest(a=30) |
|
self.assertEqual(list(x.keys()), ["a"]) |
|
self.assertEqual(list(x.values()), [30]) |
|
self.assertEqual(list(x.items()), [("a", 30)]) |
|
self.assertEqual(list(x), ["a"]) |
|
|
|
x = ModelOutputTest(a=30, b=10) |
|
self.assertEqual(list(x.keys()), ["a", "b"]) |
|
self.assertEqual(list(x.values()), [30, 10]) |
|
self.assertEqual(list(x.items()), [("a", 30), ("b", 10)]) |
|
self.assertEqual(list(x), ["a", "b"]) |
|
|
|
x = ModelOutputTest(a=30, c=10) |
|
self.assertEqual(list(x.keys()), ["a", "c"]) |
|
self.assertEqual(list(x.values()), [30, 10]) |
|
self.assertEqual(list(x.items()), [("a", 30), ("c", 10)]) |
|
self.assertEqual(list(x), ["a", "c"]) |
|
|
|
with self.assertRaises(Exception): |
|
x = x.update({"d": 20}) |
|
with self.assertRaises(Exception): |
|
del x["a"] |
|
with self.assertRaises(Exception): |
|
_ = x.pop("a") |
|
with self.assertRaises(Exception): |
|
_ = x.setdefault("d", 32) |
|
|
|
def test_set_attributes(self): |
|
x = ModelOutputTest(a=30) |
|
x.a = 10 |
|
self.assertEqual(x.a, 10) |
|
self.assertEqual(x["a"], 10) |
|
|
|
def test_set_keys(self): |
|
x = ModelOutputTest(a=30) |
|
x["a"] = 10 |
|
self.assertEqual(x.a, 10) |
|
self.assertEqual(x["a"], 10) |
|
|
|
def test_instantiate_from_dict(self): |
|
x = ModelOutputTest({"a": 30, "b": 10}) |
|
self.assertEqual(list(x.keys()), ["a", "b"]) |
|
self.assertEqual(x.a, 30) |
|
self.assertEqual(x.b, 10) |
|
|
|
def test_instantiate_from_iterator(self): |
|
x = ModelOutputTest([("a", 30), ("b", 10)]) |
|
self.assertEqual(list(x.keys()), ["a", "b"]) |
|
self.assertEqual(x.a, 30) |
|
self.assertEqual(x.b, 10) |
|
|
|
with self.assertRaises(ValueError): |
|
_ = ModelOutputTest([("a", 30), (10, 10)]) |
|
|
|
x = ModelOutputTest(a=(30, 30)) |
|
self.assertEqual(list(x.keys()), ["a"]) |
|
self.assertEqual(x.a, (30, 30)) |
|
|
|
@require_torch |
|
def test_torch_pytree(self): |
|
|
|
|
|
import torch.utils._pytree as pytree |
|
|
|
x = ModelOutput({"a": 1.0, "c": 2.0}) |
|
self.assertFalse(pytree._is_leaf(x)) |
|
|
|
x = ModelOutputTest(a=1.0, c=2.0) |
|
self.assertFalse(pytree._is_leaf(x)) |
|
|
|
expected_flat_outs = [1.0, 2.0] |
|
expected_tree_spec = pytree.TreeSpec(ModelOutputTest, ["a", "c"], [pytree.LeafSpec(), pytree.LeafSpec()]) |
|
|
|
actual_flat_outs, actual_tree_spec = pytree.tree_flatten(x) |
|
self.assertEqual(expected_flat_outs, actual_flat_outs) |
|
self.assertEqual(expected_tree_spec, actual_tree_spec) |
|
|
|
unflattened_x = pytree.tree_unflatten(actual_flat_outs, actual_tree_spec) |
|
self.assertEqual(x, unflattened_x) |
|
|
|
if is_torch_greater_or_equal_than_2_2: |
|
self.assertEqual( |
|
pytree.treespec_dumps(actual_tree_spec), |
|
'[1, {"type": "tests.utils.test_model_output.ModelOutputTest", "context": "[\\"a\\", \\"c\\"]", "children_spec": [{"type": null, "context": null, "children_spec": []}, {"type": null, "context": null, "children_spec": []}]}]', |
|
) |
|
|
|
|
|
@unittest.skip("CPU OOM") |
|
@require_torch |
|
def test_export_serialization(self): |
|
if not is_torch_greater_or_equal_than_2_2: |
|
return |
|
|
|
model_cls = AlbertForMaskedLM |
|
model_config = model_cls.config_class() |
|
model = model_cls(model_config) |
|
|
|
input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)} |
|
|
|
ep = torch.export.export(model, (), input_dict) |
|
|
|
buffer = io.BytesIO() |
|
torch.export.save(ep, buffer) |
|
buffer.seek(0) |
|
loaded_ep = torch.export.load(buffer) |
|
|
|
input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)} |
|
assert torch.allclose(model(**input_dict).logits, loaded_ep(**input_dict).logits) |
|
|
|
|
|
class ModelOutputTestNoDataclass(ModelOutput): |
|
"""Invalid test subclass of ModelOutput where @dataclass decorator is not used""" |
|
|
|
a: float |
|
b: Optional[float] = None |
|
c: Optional[float] = None |
|
|
|
|
|
class ModelOutputSubclassTester(unittest.TestCase): |
|
def test_direct_model_output(self): |
|
|
|
ModelOutput({"a": 1.1}) |
|
|
|
def test_subclass_no_dataclass(self): |
|
|
|
|
|
with self.assertRaises(TypeError): |
|
ModelOutputTestNoDataclass(a=1.1, b=2.2, c=3.3) |
|
|