|
import argparse |
|
import os |
|
from pathlib import Path |
|
import tempfile |
|
import sys |
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
os.system('pip install /home/user/app/vendor/pyrender') |
|
sys.path.append('/home/user/app/vendor/pyrender') |
|
from hmr2.configs import get_config |
|
from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD, |
|
ViTDetDataset) |
|
from hmr2.models import HMR2 |
|
from hmr2.utils import recursive_to |
|
from hmr2.utils.renderer import Renderer, cam_crop_to_full |
|
|
|
os.environ["PYOPENGL_PLATFORM"] = "egl" |
|
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1" |
|
|
|
try: |
|
import detectron2 |
|
except: |
|
import os |
|
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') |
|
|
|
OUT_FOLDER = 'demo_out' |
|
os.makedirs(OUT_FOLDER, exist_ok=True) |
|
|
|
|
|
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353) |
|
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt' |
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml') |
|
model_cfg = get_config(model_cfg) |
|
model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device) |
|
model.eval() |
|
|
|
|
|
|
|
from detectron2.config import LazyConfig |
|
|
|
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy |
|
|
|
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py") |
|
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl" |
|
for i in range(3): |
|
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25 |
|
detector = DefaultPredictor_Lazy(detectron2_cfg) |
|
|
|
|
|
renderer = Renderer(model_cfg, faces=model.smpl.faces) |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None): |
|
|
|
open_cv_image = np.array(in_pil_img) |
|
|
|
open_cv_image = open_cv_image[:, :, ::-1].copy() |
|
print("EEEEE", open_cv_image.shape) |
|
det_out = detector(open_cv_image) |
|
det_instances = det_out['instances'] |
|
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold) |
|
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy() |
|
|
|
|
|
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes) |
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0) |
|
|
|
all_verts = [] |
|
all_cam_t = [] |
|
all_mesh_paths = [] |
|
|
|
temp_name = next(tempfile._get_candidate_names()) |
|
|
|
for batch in dataloader: |
|
batch = recursive_to(batch, device) |
|
with torch.no_grad(): |
|
out = model(batch) |
|
|
|
pred_cam = out['pred_cam'] |
|
box_center = batch["box_center"].float() |
|
box_size = batch["box_size"].float() |
|
img_size = batch["img_size"].float() |
|
render_size = img_size |
|
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy() |
|
|
|
|
|
batch_size = batch['img'].shape[0] |
|
for n in range(batch_size): |
|
|
|
|
|
person_id = int(batch['personid'][n]) |
|
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255) |
|
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255) |
|
input_patch = input_patch.permute(1,2,0).numpy() |
|
|
|
|
|
verts = out['pred_vertices'][n].detach().cpu().numpy() |
|
cam_t = pred_cam_t[n] |
|
|
|
all_verts.append(verts) |
|
all_cam_t.append(cam_t) |
|
|
|
|
|
|
|
if True: |
|
camera_translation = cam_t.copy() |
|
tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE) |
|
|
|
temp_path = os.path.join(f'{OUT_FOLDER}/{temp_name}_{person_id}.obj') |
|
tmesh.export(temp_path) |
|
all_mesh_paths.append(temp_path) |
|
|
|
|
|
if len(all_verts) > 0: |
|
misc_args = dict( |
|
mesh_base_color=LIGHT_BLUE, |
|
scene_bg_color=(1, 1, 1), |
|
) |
|
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args) |
|
|
|
|
|
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0 |
|
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) |
|
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:] |
|
|
|
|
|
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8)) |
|
|
|
return out_pil_img, all_mesh_paths |
|
else: |
|
return None, [] |
|
|
|
|
|
with gr.Blocks(title="4DHumans", css=".gradio-container") as demo: |
|
|
|
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input image", type="pil") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Reconstructions", type="pil") |
|
output_meshes = gr.File(label="3D meshes") |
|
|
|
gr.HTML("""<br/>""") |
|
|
|
with gr.Row(): |
|
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold') |
|
send_btn = gr.Button("Infer") |
|
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image, output_meshes]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Examples([ |
|
['assets/test1.png'], |
|
['assets/test2.jpg'], |
|
['assets/test3.jpg'], |
|
['assets/test4.jpg'], |
|
['assets/test5.jpg'], |
|
], |
|
inputs=[input_image, 0.6]) |
|
|
|
|
|
|
|
demo.launch(debug=True) |
|
|
|
|
|
|
|
|
|
|