|
""" |
|
Parts of the code are taken or adapted from |
|
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py |
|
""" |
|
import torch |
|
import numpy as np |
|
from skimage.transform import rotate, resize |
|
from skimage.filters import gaussian |
|
import random |
|
import cv2 |
|
from typing import List, Dict, Tuple |
|
from yacs.config import CfgNode |
|
|
|
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None): |
|
"""Increase the size of the bounding box to match the target shape.""" |
|
if target_aspect_ratio is None: |
|
return input_shape |
|
|
|
try: |
|
w , h = input_shape |
|
except (ValueError, TypeError): |
|
return input_shape |
|
|
|
w_t, h_t = target_aspect_ratio |
|
if h / w < h_t / w_t: |
|
h_new = max(w * h_t / w_t, h) |
|
w_new = w |
|
else: |
|
h_new = h |
|
w_new = max(h * w_t / h_t, w) |
|
if h_new < h or w_new < w: |
|
breakpoint() |
|
return np.array([w_new, h_new]) |
|
|
|
def do_augmentation(aug_config: CfgNode) -> Tuple: |
|
""" |
|
Compute random augmentation parameters. |
|
Args: |
|
aug_config (CfgNode): Config containing augmentation parameters. |
|
Returns: |
|
scale (float): Box rescaling factor. |
|
rot (float): Random image rotation. |
|
do_flip (bool): Whether to flip image or not. |
|
do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT). |
|
color_scale (List): Color rescaling factor |
|
tx (float): Random translation along the x axis. |
|
ty (float): Random translation along the y axis. |
|
""" |
|
|
|
tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR |
|
ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR |
|
scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0 |
|
rot = np.clip(np.random.randn(), -2.0, |
|
2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0 |
|
do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE |
|
do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE |
|
extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0) |
|
|
|
c_up = 1.0 + aug_config.COLOR_SCALE |
|
c_low = 1.0 - aug_config.COLOR_SCALE |
|
color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)] |
|
return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty |
|
|
|
def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array: |
|
""" |
|
Rotate a 2D point on the x-y plane. |
|
Args: |
|
pt_2d (np.array): Input 2D point with shape (2,). |
|
rot_rad (float): Rotation angle |
|
Returns: |
|
np.array: Rotated 2D point. |
|
""" |
|
x = pt_2d[0] |
|
y = pt_2d[1] |
|
sn, cs = np.sin(rot_rad), np.cos(rot_rad) |
|
xx = x * cs - y * sn |
|
yy = x * sn + y * cs |
|
return np.array([xx, yy], dtype=np.float32) |
|
|
|
|
|
def gen_trans_from_patch_cv(c_x: float, c_y: float, |
|
src_width: float, src_height: float, |
|
dst_width: float, dst_height: float, |
|
scale: float, rot: float) -> np.array: |
|
""" |
|
Create transformation matrix for the bounding box crop. |
|
Args: |
|
c_x (float): Bounding box center x coordinate in the original image. |
|
c_y (float): Bounding box center y coordinate in the original image. |
|
src_width (float): Bounding box width. |
|
src_height (float): Bounding box height. |
|
dst_width (float): Output box width. |
|
dst_height (float): Output box height. |
|
scale (float): Rescaling factor for the bounding box (augmentation). |
|
rot (float): Random rotation applied to the box. |
|
Returns: |
|
trans (np.array): Target geometric transformation. |
|
""" |
|
|
|
src_w = src_width * scale |
|
src_h = src_height * scale |
|
src_center = np.zeros(2) |
|
src_center[0] = c_x |
|
src_center[1] = c_y |
|
|
|
rot_rad = np.pi * rot / 180 |
|
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad) |
|
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad) |
|
|
|
dst_w = dst_width |
|
dst_h = dst_height |
|
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32) |
|
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32) |
|
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32) |
|
|
|
src = np.zeros((3, 2), dtype=np.float32) |
|
src[0, :] = src_center |
|
src[1, :] = src_center + src_downdir |
|
src[2, :] = src_center + src_rightdir |
|
|
|
dst = np.zeros((3, 2), dtype=np.float32) |
|
dst[0, :] = dst_center |
|
dst[1, :] = dst_center + dst_downdir |
|
dst[2, :] = dst_center + dst_rightdir |
|
|
|
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) |
|
|
|
return trans |
|
|
|
|
|
def trans_point2d(pt_2d: np.array, trans: np.array): |
|
""" |
|
Transform a 2D point using translation matrix trans. |
|
Args: |
|
pt_2d (np.array): Input 2D point with shape (2,). |
|
trans (np.array): Transformation matrix. |
|
Returns: |
|
np.array: Transformed 2D point. |
|
""" |
|
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T |
|
dst_pt = np.dot(trans, src_pt) |
|
return dst_pt[0:2] |
|
|
|
def get_transform(center, scale, res, rot=0): |
|
"""Generate transformation matrix.""" |
|
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py""" |
|
h = 200 * scale |
|
t = np.zeros((3, 3)) |
|
t[0, 0] = float(res[1]) / h |
|
t[1, 1] = float(res[0]) / h |
|
t[0, 2] = res[1] * (-float(center[0]) / h + .5) |
|
t[1, 2] = res[0] * (-float(center[1]) / h + .5) |
|
t[2, 2] = 1 |
|
if not rot == 0: |
|
rot = -rot |
|
rot_mat = np.zeros((3, 3)) |
|
rot_rad = rot * np.pi / 180 |
|
sn, cs = np.sin(rot_rad), np.cos(rot_rad) |
|
rot_mat[0, :2] = [cs, -sn] |
|
rot_mat[1, :2] = [sn, cs] |
|
rot_mat[2, 2] = 1 |
|
|
|
t_mat = np.eye(3) |
|
t_mat[0, 2] = -res[1] / 2 |
|
t_mat[1, 2] = -res[0] / 2 |
|
t_inv = t_mat.copy() |
|
t_inv[:2, 2] *= -1 |
|
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t))) |
|
return t |
|
|
|
|
|
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True): |
|
"""Transform pixel location to different reference.""" |
|
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py""" |
|
t = get_transform(center, scale, res, rot=rot) |
|
if invert: |
|
t = np.linalg.inv(t) |
|
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T |
|
new_pt = np.dot(t, new_pt) |
|
if as_int: |
|
new_pt = new_pt.astype(int) |
|
return new_pt[:2] + 1 |
|
|
|
def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0): |
|
c_x = (ul[0] + br[0])/2 |
|
c_y = (ul[1] + br[1])/2 |
|
bb_width = patch_width = br[0] - ul[0] |
|
bb_height = patch_height = br[1] - ul[1] |
|
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0) |
|
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=border_mode, |
|
borderValue=border_value |
|
) |
|
|
|
|
|
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT): |
|
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
) |
|
|
|
return img_patch |
|
|
|
def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float, |
|
bb_width: float, bb_height: float, |
|
patch_width: float, patch_height: float, |
|
do_flip: bool, scale: float, rot: float, |
|
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]: |
|
""" |
|
Crop image according to the supplied bounding box. |
|
Args: |
|
img (np.array): Input image of shape (H, W, 3) |
|
c_x (float): Bounding box center x coordinate in the original image. |
|
c_y (float): Bounding box center y coordinate in the original image. |
|
bb_width (float): Bounding box width. |
|
bb_height (float): Bounding box height. |
|
patch_width (float): Output box width. |
|
patch_height (float): Output box height. |
|
do_flip (bool): Whether to flip image or not. |
|
scale (float): Rescaling factor for the bounding box (augmentation). |
|
rot (float): Random rotation applied to the box. |
|
Returns: |
|
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3) |
|
trans (np.array): Transformation matrix. |
|
""" |
|
|
|
img_height, img_width, img_channels = img.shape |
|
if do_flip: |
|
img = img[:, ::-1, :] |
|
c_x = img_width - c_x - 1 |
|
|
|
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot) |
|
|
|
|
|
|
|
|
|
center = np.zeros(2) |
|
center[0] = c_x |
|
center[1] = c_y |
|
res = np.zeros(2) |
|
res[0] = patch_width |
|
res[1] = patch_height |
|
|
|
|
|
assert bb_width == bb_height, f'{bb_width=} != {bb_height=}' |
|
assert patch_width == patch_height, f'{patch_width=} != {patch_height=}' |
|
scale1 = scale*bb_width/200. |
|
|
|
|
|
ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1 |
|
|
|
br = np.array(transform([res[0] + 1, |
|
res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1 |
|
|
|
|
|
try: |
|
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1 |
|
except: |
|
breakpoint() |
|
if not rot == 0: |
|
ul -= pad |
|
br += pad |
|
|
|
|
|
if False: |
|
|
|
ul_int = ul.astype(int) |
|
br_int = br.astype(int) |
|
new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]] |
|
if len(img.shape) > 2: |
|
new_shape += [img.shape[2]] |
|
new_img = np.zeros(new_shape) |
|
|
|
|
|
new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0] |
|
new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1] |
|
|
|
old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0]) |
|
old_y = max(0, ul_int[1]), min(len(img), br_int[1]) |
|
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], |
|
old_x[0]:old_x[1]] |
|
|
|
|
|
new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not rot == 0: |
|
|
|
|
|
new_img = rotate(new_img, rot) |
|
new_img = new_img[pad:-pad, pad:-pad] |
|
|
|
if new_img.shape[0] < 1 or new_img.shape[1] < 1: |
|
print(f'{img.shape=}') |
|
print(f'{new_img.shape=}') |
|
print(f'{ul=}') |
|
print(f'{br=}') |
|
print(f'{pad=}') |
|
print(f'{rot=}') |
|
|
|
breakpoint() |
|
|
|
|
|
new_img = resize(new_img, res) |
|
|
|
new_img = np.clip(new_img, 0, 255).astype(np.uint8) |
|
|
|
return new_img, trans |
|
|
|
|
|
def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float, |
|
bb_width: float, bb_height: float, |
|
patch_width: float, patch_height: float, |
|
do_flip: bool, scale: float, rot: float, |
|
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]: |
|
""" |
|
Crop the input image and return the crop and the corresponding transformation matrix. |
|
Args: |
|
img (np.array): Input image of shape (H, W, 3) |
|
c_x (float): Bounding box center x coordinate in the original image. |
|
c_y (float): Bounding box center y coordinate in the original image. |
|
bb_width (float): Bounding box width. |
|
bb_height (float): Bounding box height. |
|
patch_width (float): Output box width. |
|
patch_height (float): Output box height. |
|
do_flip (bool): Whether to flip image or not. |
|
scale (float): Rescaling factor for the bounding box (augmentation). |
|
rot (float): Random rotation applied to the box. |
|
Returns: |
|
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3) |
|
trans (np.array): Transformation matrix. |
|
""" |
|
|
|
img_height, img_width, img_channels = img.shape |
|
if do_flip: |
|
img = img[:, ::-1, :] |
|
c_x = img_width - c_x - 1 |
|
|
|
|
|
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot) |
|
|
|
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=border_mode, |
|
borderValue=border_value, |
|
) |
|
|
|
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT): |
|
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
) |
|
|
|
return img_patch, trans |
|
|
|
|
|
def convert_cvimg_to_tensor(cvimg: np.array): |
|
""" |
|
Convert image from HWC to CHW format. |
|
Args: |
|
cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV. |
|
Returns: |
|
np.array: Output image of shape (3, H, W). |
|
""" |
|
|
|
img = cvimg.copy() |
|
img = np.transpose(img, (2, 0, 1)) |
|
|
|
img = img.astype(np.float32) |
|
return img |
|
|
|
def fliplr_params(smpl_params: Dict, has_smpl_params: Dict) -> Tuple[Dict, Dict]: |
|
""" |
|
Flip SMPL parameters when flipping the image. |
|
Args: |
|
smpl_params (Dict): SMPL parameter annotations. |
|
has_smpl_params (Dict): Whether SMPL annotations are valid. |
|
Returns: |
|
Dict, Dict: Flipped SMPL parameters and valid flags. |
|
""" |
|
global_orient = smpl_params['global_orient'].copy() |
|
body_pose = smpl_params['body_pose'].copy() |
|
betas = smpl_params['betas'].copy() |
|
has_global_orient = has_smpl_params['global_orient'].copy() |
|
has_body_pose = has_smpl_params['body_pose'].copy() |
|
has_betas = has_smpl_params['betas'].copy() |
|
|
|
body_pose_permutation = [6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13, |
|
14 ,18, 19, 20, 24, 25, 26, 21, 22, 23, 27, 28, 29, 33, |
|
34, 35, 30, 31, 32, 36, 37, 38, 42, 43, 44, 39, 40, 41, |
|
45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58, 59, 54, 55, |
|
56, 63, 64, 65, 60, 61, 62, 69, 70, 71, 66, 67, 68] |
|
body_pose_permutation = body_pose_permutation[:len(body_pose)] |
|
body_pose_permutation = [i-3 for i in body_pose_permutation] |
|
|
|
body_pose = body_pose[body_pose_permutation] |
|
|
|
global_orient[1::3] *= -1 |
|
global_orient[2::3] *= -1 |
|
body_pose[1::3] *= -1 |
|
body_pose[2::3] *= -1 |
|
|
|
smpl_params = {'global_orient': global_orient.astype(np.float32), |
|
'body_pose': body_pose.astype(np.float32), |
|
'betas': betas.astype(np.float32) |
|
} |
|
|
|
has_smpl_params = {'global_orient': has_global_orient, |
|
'body_pose': has_body_pose, |
|
'betas': has_betas |
|
} |
|
|
|
return smpl_params, has_smpl_params |
|
|
|
|
|
def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array: |
|
""" |
|
Flip 2D or 3D keypoints. |
|
Args: |
|
joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence. |
|
flip_permutation (List): Permutation to apply after flipping. |
|
Returns: |
|
np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively. |
|
""" |
|
joints = joints.copy() |
|
|
|
joints[:, 0] = width - joints[:, 0] - 1 |
|
joints = joints[flip_permutation, :] |
|
|
|
return joints |
|
|
|
def keypoint_3d_processing(keypoints_3d: np.array, flip_permutation: List[int], rot: float, do_flip: float) -> np.array: |
|
""" |
|
Process 3D keypoints (rotation/flipping). |
|
Args: |
|
keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence. |
|
flip_permutation (List): Permutation to apply after flipping. |
|
rot (float): Random rotation applied to the keypoints. |
|
do_flip (bool): Whether to flip keypoints or not. |
|
Returns: |
|
np.array: Transformed 3D keypoints with shape (N, 4). |
|
""" |
|
if do_flip: |
|
keypoints_3d = fliplr_keypoints(keypoints_3d, 1, flip_permutation) |
|
|
|
rot_mat = np.eye(3) |
|
if not rot == 0: |
|
rot_rad = -rot * np.pi / 180 |
|
sn,cs = np.sin(rot_rad), np.cos(rot_rad) |
|
rot_mat[0,:2] = [cs, -sn] |
|
rot_mat[1,:2] = [sn, cs] |
|
keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1]) |
|
|
|
keypoints_3d = keypoints_3d.astype('float32') |
|
return keypoints_3d |
|
|
|
def rot_aa(aa: np.array, rot: float) -> np.array: |
|
""" |
|
Rotate axis angle parameters. |
|
Args: |
|
aa (np.array): Axis-angle vector of shape (3,). |
|
rot (np.array): Rotation angle in degrees. |
|
Returns: |
|
np.array: Rotated axis-angle vector. |
|
""" |
|
|
|
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], |
|
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], |
|
[0, 0, 1]]) |
|
|
|
per_rdg, _ = cv2.Rodrigues(aa) |
|
|
|
resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg)) |
|
aa = (resrot.T)[0] |
|
return aa.astype(np.float32) |
|
|
|
def smpl_param_processing(smpl_params: Dict, has_smpl_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]: |
|
""" |
|
Apply random augmentations to the SMPL parameters. |
|
Args: |
|
smpl_params (Dict): SMPL parameter annotations. |
|
has_smpl_params (Dict): Whether SMPL annotations are valid. |
|
rot (float): Random rotation applied to the keypoints. |
|
do_flip (bool): Whether to flip keypoints or not. |
|
Returns: |
|
Dict, Dict: Transformed SMPL parameters and valid flags. |
|
""" |
|
if do_flip: |
|
smpl_params, has_smpl_params = fliplr_params(smpl_params, has_smpl_params) |
|
smpl_params['global_orient'] = rot_aa(smpl_params['global_orient'], rot) |
|
return smpl_params, has_smpl_params |
|
|
|
|
|
|
|
def get_example(img_path: str|np.ndarray, center_x: float, center_y: float, |
|
width: float, height: float, |
|
keypoints_2d: np.array, keypoints_3d: np.array, |
|
smpl_params: Dict, has_smpl_params: Dict, |
|
flip_kp_permutation: List[int], |
|
patch_width: int, patch_height: int, |
|
mean: np.array, std: np.array, |
|
do_augment: bool, augm_config: CfgNode, |
|
is_bgr: bool = True, |
|
use_skimage_antialias: bool = False, |
|
border_mode: int = cv2.BORDER_CONSTANT, |
|
return_trans: bool = False) -> Tuple: |
|
""" |
|
Get an example from the dataset and (possibly) apply random augmentations. |
|
Args: |
|
img_path (str): Image filename |
|
center_x (float): Bounding box center x coordinate in the original image. |
|
center_y (float): Bounding box center y coordinate in the original image. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates. |
|
keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints. |
|
smpl_params (Dict): SMPL parameter annotations. |
|
has_smpl_params (Dict): Whether SMPL annotations are valid. |
|
flip_kp_permutation (List): Permutation to apply to the keypoints after flipping. |
|
patch_width (float): Output box width. |
|
patch_height (float): Output box height. |
|
mean (np.array): Array of shape (3,) containing the mean for normalizing the input image. |
|
std (np.array): Array of shape (3,) containing the std for normalizing the input image. |
|
do_augment (bool): Whether to apply data augmentation or not. |
|
aug_config (CfgNode): Config containing augmentation parameters. |
|
Returns: |
|
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size |
|
img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height) |
|
keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints. |
|
keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints. |
|
smpl_params (Dict): Transformed SMPL parameters. |
|
has_smpl_params (Dict): Valid flag for transformed SMPL parameters. |
|
img_size (np.array): Image size of the original image. |
|
""" |
|
if isinstance(img_path, str): |
|
|
|
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) |
|
if not isinstance(cvimg, np.ndarray): |
|
raise IOError("Fail to read %s" % img_path) |
|
elif isinstance(img_path, np.ndarray): |
|
cvimg = img_path |
|
else: |
|
raise TypeError('img_path must be either a string or a numpy array') |
|
img_height, img_width, img_channels = cvimg.shape |
|
|
|
img_size = np.array([img_height, img_width]) |
|
|
|
|
|
if do_augment: |
|
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config) |
|
else: |
|
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0, 1.0, 1.0], 0., 0. |
|
|
|
if width < 1 or height < 1: |
|
breakpoint() |
|
|
|
if do_extreme_crop: |
|
if extreme_crop_lvl == 0: |
|
center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d) |
|
elif extreme_crop_lvl == 1: |
|
center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height, keypoints_2d) |
|
|
|
THRESH = 4 |
|
if width1 < THRESH or height1 < THRESH: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
|
else: |
|
center_x, center_y, width, height = center_x1, center_y1, width1, height1 |
|
|
|
center_x += width * tx |
|
center_y += height * ty |
|
|
|
|
|
keypoints_3d = keypoint_3d_processing(keypoints_3d, flip_kp_permutation, rot, do_flip) |
|
|
|
|
|
if use_skimage_antialias: |
|
|
|
downsampling_factor = (patch_width / (width*scale)) |
|
if downsampling_factor > 1.1: |
|
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True, truncate=3.0) |
|
|
|
img_patch_cv, trans = generate_image_patch_cv2(cvimg, |
|
center_x, center_y, |
|
width, height, |
|
patch_width, patch_height, |
|
do_flip, scale, rot, |
|
border_mode=border_mode) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = img_patch_cv.copy() |
|
if is_bgr: |
|
image = image[:, :, ::-1] |
|
img_patch_cv = image.copy() |
|
img_patch = convert_cvimg_to_tensor(image) |
|
|
|
|
|
smpl_params, has_smpl_params = smpl_param_processing(smpl_params, has_smpl_params, rot, do_flip) |
|
|
|
|
|
for n_c in range(min(img_channels, 3)): |
|
img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255) |
|
if mean is not None and std is not None: |
|
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c] |
|
if do_flip: |
|
keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, flip_kp_permutation) |
|
|
|
|
|
for n_jt in range(len(keypoints_2d)): |
|
keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans) |
|
keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5 |
|
|
|
if not return_trans: |
|
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size |
|
else: |
|
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size, trans |
|
|
|
def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple: |
|
""" |
|
Extreme cropping: Crop the box up to the hip locations. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25+0, 25+1, 25+4, 25+5] |
|
keypoints_2d[lower_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
|
|
def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box up to the shoulder locations. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16]] |
|
keypoints_2d[lower_body_keypoints, :] = 0 |
|
center, scale = get_bbox(keypoints_2d) |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.2 * scale[0] |
|
height = 1.2 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the head. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16]] |
|
keypoints_2d[lower_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.3 * scale[0] |
|
height = 1.3 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the torso. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 4, 5, 6, 7, 10, 11, 13, 17, 18]] |
|
keypoints_2d[nontorso_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the right arm. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]] |
|
keypoints_2d[nonrightarm_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the left arm. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]] |
|
keypoints_2d[nonleftarm_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the legs. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]] |
|
keypoints_2d[nonlegs_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the right leg. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]] |
|
keypoints_2d[nonrightleg_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): |
|
""" |
|
Extreme cropping: Crop the box and keep on only the left leg. |
|
Args: |
|
center_x (float): x coordinate of the bounding box center. |
|
center_y (float): y coordinate of the bounding box center. |
|
width (float): Bounding box width. |
|
height (float): Bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
center_x (float): x coordinate of the new bounding box center. |
|
center_y (float): y coordinate of the new bounding box center. |
|
width (float): New bounding box width. |
|
height (float): New bounding box height. |
|
""" |
|
keypoints_2d = keypoints_2d.copy() |
|
nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]] |
|
keypoints_2d[nonleftleg_body_keypoints, :] = 0 |
|
if keypoints_2d[:, -1].sum() > 1: |
|
center, scale = get_bbox(keypoints_2d) |
|
center_x = center[0] |
|
center_y = center[1] |
|
width = 1.1 * scale[0] |
|
height = 1.1 * scale[1] |
|
return center_x, center_y, width, height |
|
|
|
def full_body(keypoints_2d: np.array) -> bool: |
|
""" |
|
Check if all main body joints are visible. |
|
Args: |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
bool: True if all main body joints are visible. |
|
""" |
|
|
|
body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14] |
|
body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]] |
|
return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(body_keypoints) |
|
|
|
def upper_body(keypoints_2d: np.array): |
|
""" |
|
Check if all upper body joints are visible. |
|
Args: |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
Returns: |
|
bool: True if all main body joints are visible. |
|
""" |
|
lower_body_keypoints_openpose = [10, 11, 13, 14] |
|
lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]] |
|
upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18] |
|
upper_body_keypoints = [25+8, 25+9, 25+12, 25+13, 25+17, 25+18] |
|
return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0)\ |
|
and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2) |
|
|
|
def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple: |
|
""" |
|
Get center and scale for bounding box from openpose detections. |
|
Args: |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints. |
|
Returns: |
|
center (np.array): Array of shape (2,) containing the new bounding box center. |
|
scale (float): New bounding box scale. |
|
""" |
|
valid = keypoints_2d[:,-1] > 0 |
|
valid_keypoints = keypoints_2d[valid][:,:-1] |
|
center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0)) |
|
bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0)) |
|
|
|
scale = bbox_size |
|
scale *= rescale |
|
return center, scale |
|
|
|
def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple: |
|
""" |
|
Perform extreme cropping |
|
Args: |
|
center_x (float): x coordinate of bounding box center. |
|
center_y (float): y coordinate of bounding box center. |
|
width (float): bounding box width. |
|
height (float): bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints. |
|
Returns: |
|
center_x (float): x coordinate of bounding box center. |
|
center_y (float): y coordinate of bounding box center. |
|
width (float): bounding box width. |
|
height (float): bounding box height. |
|
""" |
|
p = torch.rand(1).item() |
|
if full_body(keypoints_2d): |
|
if p < 0.7: |
|
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.9: |
|
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) |
|
else: |
|
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) |
|
elif upper_body(keypoints_2d): |
|
if p < 0.9: |
|
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) |
|
else: |
|
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) |
|
|
|
return center_x, center_y, max(width, height), max(width, height) |
|
|
|
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple: |
|
""" |
|
Perform aggressive extreme cropping |
|
Args: |
|
center_x (float): x coordinate of bounding box center. |
|
center_y (float): y coordinate of bounding box center. |
|
width (float): bounding box width. |
|
height (float): bounding box height. |
|
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. |
|
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints. |
|
Returns: |
|
center_x (float): x coordinate of bounding box center. |
|
center_y (float): y coordinate of bounding box center. |
|
width (float): bounding box width. |
|
height (float): bounding box height. |
|
""" |
|
p = torch.rand(1).item() |
|
if full_body(keypoints_2d): |
|
if p < 0.2: |
|
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.3: |
|
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.4: |
|
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.5: |
|
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.6: |
|
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.7: |
|
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.8: |
|
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.9: |
|
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d) |
|
else: |
|
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d) |
|
elif upper_body(keypoints_2d): |
|
if p < 0.2: |
|
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.4: |
|
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.6: |
|
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d) |
|
elif p < 0.8: |
|
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d) |
|
else: |
|
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d) |
|
return center_x, center_y, max(width, height), max(width, height) |
|
|