|
from typing import Dict |
|
|
|
import cv2 |
|
import numpy as np |
|
from skimage.filters import gaussian |
|
from yacs.config import CfgNode |
|
import torch |
|
|
|
from .utils import (convert_cvimg_to_tensor, |
|
expand_to_aspect_ratio, |
|
generate_image_patch_cv2) |
|
|
|
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406]) |
|
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225]) |
|
|
|
class ViTDetDataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, |
|
cfg: CfgNode, |
|
img_cv2: np.array, |
|
boxes: np.array, |
|
train: bool = False, |
|
**kwargs): |
|
super().__init__() |
|
self.cfg = cfg |
|
self.img_cv2 = img_cv2 |
|
|
|
|
|
assert train == False, "ViTDetDataset is only for inference" |
|
self.train = train |
|
self.img_size = cfg.MODEL.IMAGE_SIZE |
|
self.mean = 255. * np.array(self.cfg.MODEL.IMAGE_MEAN) |
|
self.std = 255. * np.array(self.cfg.MODEL.IMAGE_STD) |
|
|
|
|
|
boxes = boxes.astype(np.float32) |
|
self.center = (boxes[:, 2:4] + boxes[:, 0:2]) / 2.0 |
|
self.scale = (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0 |
|
self.personid = np.arange(len(boxes), dtype=np.int32) |
|
|
|
def __len__(self) -> int: |
|
return len(self.personid) |
|
|
|
def __getitem__(self, idx: int) -> Dict[str, np.array]: |
|
|
|
center = self.center[idx].copy() |
|
center_x = center[0] |
|
center_y = center[1] |
|
|
|
scale = self.scale[idx] |
|
BBOX_SHAPE = self.cfg.MODEL.get('BBOX_SHAPE', None) |
|
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max() |
|
|
|
patch_width = patch_height = self.img_size |
|
|
|
|
|
|
|
cvimg = self.img_cv2.copy() |
|
if True: |
|
|
|
downsampling_factor = ((bbox_size*1.0) / patch_width) |
|
print(f'{downsampling_factor=}') |
|
downsampling_factor = downsampling_factor / 2.0 |
|
if downsampling_factor > 1.1: |
|
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True) |
|
|
|
|
|
img_patch_cv, trans = generate_image_patch_cv2(cvimg, |
|
center_x, center_y, |
|
bbox_size, bbox_size, |
|
patch_width, patch_height, |
|
False, 1.0, 0, |
|
border_mode=cv2.BORDER_CONSTANT) |
|
img_patch_cv = img_patch_cv[:, :, ::-1] |
|
img_patch = convert_cvimg_to_tensor(img_patch_cv) |
|
|
|
|
|
for n_c in range(min(self.img_cv2.shape[2], 3)): |
|
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - self.mean[n_c]) / self.std[n_c] |
|
|
|
|
|
item = { |
|
'img': img_patch, |
|
'personid': int(self.personid[idx]), |
|
} |
|
item['box_center'] = self.center[idx].copy() |
|
item['box_size'] = bbox_size |
|
item['img_size'] = 1.0 * np.array([cvimg.shape[1], cvimg.shape[0]]) |
|
return item |
|
|