|
import torch |
|
import torch.nn as nn |
|
|
|
class Discriminator(nn.Module): |
|
|
|
def __init__(self): |
|
""" |
|
Pose + Shape discriminator proposed in HMR |
|
""" |
|
super(Discriminator, self).__init__() |
|
|
|
self.num_joints = 23 |
|
|
|
self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1) |
|
nn.init.xavier_uniform_(self.D_conv1.weight) |
|
nn.init.zeros_(self.D_conv1.bias) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1) |
|
nn.init.xavier_uniform_(self.D_conv2.weight) |
|
nn.init.zeros_(self.D_conv2.bias) |
|
pose_out = [] |
|
for i in range(self.num_joints): |
|
pose_out_temp = nn.Linear(32, 1) |
|
nn.init.xavier_uniform_(pose_out_temp.weight) |
|
nn.init.zeros_(pose_out_temp.bias) |
|
pose_out.append(pose_out_temp) |
|
self.pose_out = nn.ModuleList(pose_out) |
|
|
|
|
|
self.betas_fc1 = nn.Linear(10, 10) |
|
nn.init.xavier_uniform_(self.betas_fc1.weight) |
|
nn.init.zeros_(self.betas_fc1.bias) |
|
self.betas_fc2 = nn.Linear(10, 5) |
|
nn.init.xavier_uniform_(self.betas_fc2.weight) |
|
nn.init.zeros_(self.betas_fc2.bias) |
|
self.betas_out = nn.Linear(5, 1) |
|
nn.init.xavier_uniform_(self.betas_out.weight) |
|
nn.init.zeros_(self.betas_out.bias) |
|
|
|
|
|
self.D_alljoints_fc1 = nn.Linear(32*self.num_joints, 1024) |
|
nn.init.xavier_uniform_(self.D_alljoints_fc1.weight) |
|
nn.init.zeros_(self.D_alljoints_fc1.bias) |
|
self.D_alljoints_fc2 = nn.Linear(1024, 1024) |
|
nn.init.xavier_uniform_(self.D_alljoints_fc2.weight) |
|
nn.init.zeros_(self.D_alljoints_fc2.bias) |
|
self.D_alljoints_out = nn.Linear(1024, 1) |
|
nn.init.xavier_uniform_(self.D_alljoints_out.weight) |
|
nn.init.zeros_(self.D_alljoints_out.bias) |
|
|
|
|
|
def forward(self, poses: torch.Tensor, betas: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass of the discriminator. |
|
Args: |
|
poses (torch.Tensor): Tensor of shape (B, 23, 3, 3) containing a batch of SMPL body poses (excluding the global orientation). |
|
betas (torch.Tensor): Tensor of shape (B, 10) containign a batch of SMPL beta coefficients. |
|
Returns: |
|
torch.Tensor: Discriminator output with shape (B, 25) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
poses = poses.reshape(-1, self.num_joints, 1, 9) |
|
bn = poses.shape[0] |
|
|
|
poses = poses.permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
poses = self.D_conv1(poses) |
|
poses = self.relu(poses) |
|
poses = self.D_conv2(poses) |
|
poses = self.relu(poses) |
|
|
|
poses_out = [] |
|
for i in range(self.num_joints): |
|
poses_out_ = self.pose_out[i](poses[:, :, i, 0]) |
|
poses_out.append(poses_out_) |
|
poses_out = torch.cat(poses_out, dim=1) |
|
|
|
|
|
betas = self.betas_fc1(betas) |
|
betas = self.relu(betas) |
|
betas = self.betas_fc2(betas) |
|
betas = self.relu(betas) |
|
betas_out = self.betas_out(betas) |
|
|
|
|
|
poses = poses.reshape(bn,-1) |
|
poses_all = self.D_alljoints_fc1(poses) |
|
poses_all = self.relu(poses_all) |
|
poses_all = self.D_alljoints_fc2(poses_all) |
|
poses_all = self.relu(poses_all) |
|
poses_all_out = self.D_alljoints_out(poses_all) |
|
|
|
disc_out = torch.cat((poses_out, betas_out, poses_all_out), 1) |
|
return disc_out |
|
|