|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
def uv_to_xyz_and_normals(verts, f, fmap, bmap, ftov): |
|
vn = estimate_vertex_normals(verts, f, ftov) |
|
pixels_to_set = torch.nonzero(fmap+1) |
|
x_to_set = pixels_to_set[:,0] |
|
y_to_set = pixels_to_set[:,1] |
|
b_coords = bmap[x_to_set, y_to_set, :] |
|
f_coords = fmap[x_to_set, y_to_set] |
|
v_ids = f[f_coords] |
|
points = (b_coords[:,0,None]*verts[:,v_ids[:,0]] |
|
+ b_coords[:,1,None]*verts[:,v_ids[:,1]] |
|
+ b_coords[:,2,None]*verts[:,v_ids[:,2]]) |
|
normals = (b_coords[:,0,None]*vn[:,v_ids[:,0]] |
|
+ b_coords[:,1,None]*vn[:,v_ids[:,1]] |
|
+ b_coords[:,2,None]*vn[:,v_ids[:,2]]) |
|
return points, normals, vn, f_coords |
|
|
|
def estimate_vertex_normals(v, f, ftov): |
|
face_normals = TriNormalsScaled(v, f) |
|
non_scaled_normals = torch.einsum('ij,bjk->bik', ftov, face_normals) |
|
norms = torch.sum(non_scaled_normals ** 2.0, 2) ** 0.5 |
|
norms[norms == 0] = 1.0 |
|
return torch.div(non_scaled_normals, norms[:,:,None]) |
|
|
|
def TriNormalsScaled(v, f): |
|
return torch.cross(_edges_for(v, f, 1, 0), _edges_for(v, f, 2, 0)) |
|
|
|
def _edges_for(v, f, cplus, cminus): |
|
return v[:,f[:,cplus]] - v[:,f[:,cminus]] |
|
|
|
def psbody_get_face_visibility(v, n, f, cams, normal_threshold=0.5): |
|
bn, nverts, _ = v.shape |
|
nfaces, _ = f.shape |
|
vis_f = np.zeros([bn, nfaces], dtype='float32') |
|
for i in range(bn): |
|
vis, n_dot_cam = visibility_compute(v=v[i], n=n[i], f=f, cams=cams) |
|
vis_v = (vis == 1) & (n_dot_cam > normal_threshold) |
|
vis_f[i] = np.all(vis_v[0,f],1) |
|
return vis_f |
|
|
|
def compute_uvsampler(vt, ft, tex_size=6): |
|
""" |
|
For this mesh, pre-computes the UV coordinates for |
|
F x T x T points. |
|
Returns F x T x T x 2 |
|
""" |
|
uv = obj2nmr_uvmap(ft, vt, tex_size=tex_size) |
|
uv = uv.reshape(-1, tex_size, tex_size, 2) |
|
return uv |
|
|
|
def obj2nmr_uvmap(ft, vt, tex_size=6): |
|
""" |
|
Converts obj uv_map to NMR uv_map (F x T x T x 2), |
|
where tex_size (T) is the sample rate on each face. |
|
""" |
|
|
|
uv_map_for_verts = vt[ft] |
|
|
|
|
|
uv_map_for_verts[:, :, 1] = 1 - uv_map_for_verts[:, :, 1] |
|
|
|
|
|
uv_map_for_verts = (2 * uv_map_for_verts) - 1 |
|
|
|
alpha = np.arange(tex_size, dtype=np.float) / (tex_size - 1) |
|
beta = np.arange(tex_size, dtype=np.float) / (tex_size - 1) |
|
import itertools |
|
|
|
coords = np.stack([p for p in itertools.product(*[alpha, beta])]) |
|
|
|
|
|
v2 = uv_map_for_verts[:, 2] |
|
v0v2 = uv_map_for_verts[:, 0] - uv_map_for_verts[:, 2] |
|
v1v2 = uv_map_for_verts[:, 1] - uv_map_for_verts[:, 2] |
|
|
|
uv_map = np.dstack([v0v2, v1v2]).dot(coords.T) + v2.reshape(-1, 2, 1) |
|
|
|
|
|
uv_map = np.transpose(uv_map, (0, 2, 1)).reshape(-1, tex_size, tex_size, 2) |
|
|
|
return uv_map |
|
|