Spaces:
Runtime error
Runtime error
File size: 7,330 Bytes
5f33ab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 17 06:46:20 PM EDT 2022
author: Ryan Hildebrandt, github.com/ryancahildebrandt
"""
# imports
import random
import sklearn as sk
import sklearn.manifold
import umap
from sklearn.decomposition import FactorAnalysis
from sklearn.decomposition import FastICA
from sklearn.decomposition import IncrementalPCA
from sklearn.decomposition import KernelPCA
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.decomposition import MiniBatchSparsePCA
from sklearn.decomposition import NMF
from sklearn.decomposition import PCA
from sklearn.decomposition import SparsePCA
from sklearn.decomposition import TruncatedSVD
from sklearn.random_projection import GaussianRandomProjection
from sklearn.random_projection import SparseRandomProjection
random.seed(42)
def dim_tsne(in_embs, metric, method):
"""
TSNE(n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate='warn', n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', metric_params=None, init='warn', verbose=0, random_state=None, method='barnes_hut', angle=0.5, n_jobs=None, square_distances='deprecated')[source]¶
"""
d2 = sk.manifold.TSNE(n_components = 2, metric = metric, method = method).fit_transform(in_embs)
d3 = sk.manifold.TSNE(n_components = 3, metric = metric, method = method).fit_transform(in_embs)
return [d2,d3]
def dim_gaussrandom(in_embs, eps):
"""
GaussianRandomProjection(n_components='auto', *, eps=0.1, compute_inverse_components=False, random_state=None)[source]¶
"""
d2 = GaussianRandomProjection(n_components = 2, eps = eps).fit_transform(in_embs)
d3 = GaussianRandomProjection(n_components = 3, eps = eps).fit_transform(in_embs)
return [d2,d3]
def dim_sparserandom(in_embs, eps):
"""
SparseRandomProjection(n_components='auto', *, density='auto', eps=0.1, dense_output=False, compute_inverse_components=False, random_state=None)[source]¶
"""
d2 = SparseRandomProjection(n_components = 2, eps = eps).fit_transform(in_embs)
d3 = SparseRandomProjection(n_components = 3, eps = eps).fit_transform(in_embs)
return [d2,d3]
def dim_factor(in_embs, svd_method):
"""
FactorAnalysis(n_components=None, *, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None, svd_method='randomized', iterated_power=3, rotation=None, random_state=0)[source]¶
"""
d2 = FactorAnalysis(n_components = 2, svd_method = svd_method).fit_transform(in_embs)
d3 = FactorAnalysis(n_components = 3, svd_method = svd_method).fit_transform(in_embs)
return [d2,d3]
def dim_fastica(in_embs, algorithm):
"""
FastICA(n_components=None, *, algorithm='parallel', whiten='warn', fun='logcosh', fun_args=None, max_iter=200, tol=0.0001, w_init=None, random_state=None)[source]¶
"""
d2 = FastICA(n_components = 2, algorithm = algorithm).fit_transform(in_embs)
d3 = FastICA(n_components = 3, algorithm = algorithm).fit_transform(in_embs)
return [d2,d3]
def dim_ipca(in_embs):
"""
IncrementalPCA(n_components=None, *, whiten=False, copy=True, batch_size=None)[source]¶
"""
d2 = IncrementalPCA(n_components = 2).fit_transform(in_embs)
d3 = IncrementalPCA(n_components = 3).fit_transform(in_embs)
return [d2,d3]
def dim_kpca(in_embs, kernel):
"""
KernelPCA(n_components=None, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, iterated_power='auto', remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=None)[source]¶
"""
d2 = KernelPCA(n_components = 2, kernel = kernel).fit_transform(in_embs)
d3 = KernelPCA(n_components = 3, kernel = kernel).fit_transform(in_embs)
return [d2,d3]
def dim_lda(in_embs):
"""
LatentDirichletAllocation(n_components=10, *, doc_topic_prior=None, topic_word_prior=None, learning_method='batch', learning_decay=0.7, learning_offset=10.0, max_iter=10, batch_size=128, evaluate_every=- 1, total_samples=1000000.0, perp_tol=0.1, mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=None, verbose=0, random_state=None)[source]¶
"""
d2 = LatentDirichletAllocation(n_components = 2).fit_transform(in_embs)
d3 = LatentDirichletAllocation(n_components = 3).fit_transform(in_embs)
return [d2,d3]
def dim_minibatchspca(in_embs, method):
"""
MiniBatchSparsePCA(n_components=None, *, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=None, method='lars', random_state=None)[source]¶
"""
d2 = MiniBatchSparsePCA(n_components = 2, method = method).fit_transform(in_embs)
d3 = MiniBatchSparsePCA(n_components = 3, method = method).fit_transform(in_embs)
return [d2,d3]
def dim_nmf(in_embs, init):
"""
NMF(n_components=None, *, init=None, solver='cd', beta_loss='frobenius', tol=0.0001, max_iter=200, random_state=None, alpha='deprecated', alpha_W=0.0, alpha_H='same', l1_ratio=0.0, verbose=0, shuffle=False, regularization='deprecated')[source]¶
"""
d2 = NMF(n_components = 2, init = init).fit_transform(in_embs)
d3 = NMF(n_components = 3, init = init).fit_transform(in_embs)
return [d2,d3]
def dim_pca(in_embs):
"""
PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)[source]¶
"""
d2 = PCA(n_components = 2).fit_transform(in_embs)
d3 = PCA(n_components = 3).fit_transform(in_embs)
return [d2,d3]
def dim_spca(in_embs, method):
"""
SparsePCA(n_components=None, *, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08, method='lars', n_jobs=None, U_init=None, V_init=None, verbose=False, random_state=None)[source]¶
"""
d2 = SparsePCA(n_components = 2, method = method).fit_transform(in_embs)
d3 = SparsePCA(n_components = 3, method = method).fit_transform(in_embs)
return [d2,d3]
def dim_tsvd(in_embs, algorithm):
"""
TruncatedSVD(n_components=2, *, algorithm='randomized', n_iter=5, n_oversamples=10, power_iteration_normalizer='auto', random_state=None, tol=0.0)[source]¶
"""
d2 = TruncatedSVD(n_components = 2, algorithm = algorithm).fit_transform(in_embs)
d3 = TruncatedSVD(n_components = 3, algorithm = algorithm).fit_transform(in_embs)
return [d2,d3]
def dim_umap(in_embs, n_neighbors, min_dist, metric):
"""
UMAP(n_neighbors=15, n_components=2, metric='euclidean', metric_kwds=None, output_metric='euclidean', output_metric_kwds=None, n_epochs=None, learning_rate=1.0, init='spectral', min_dist=0.1, spread=1.0, low_memory=True, n_jobs=-1, set_op_mix_ratio=1.0, local_connectivity=1.0, repulsion_strength=1.0, negative_sample_rate=5, transform_queue_size=4.0, a=None, b=None, random_state=None, angular_rp_forest=False, target_n_neighbors=-1, target_metric='categorical', target_metric_kwds=None, target_weight=0.5, transform_seed=42, transform_mode='embedding', force_approximation_algorithm=False, verbose=False, tqdm_kwds=None, unique=False, densmap=False, dens_lambda=2.0, dens_frac=0.3, dens_var_shift=0.1, output_dens=False, disconnection_distance=None, precomputed_knn=(None, None, None))
"""
d2 = umap.UMAP(n_components = 2, n_neighbors = n_neighbors, min_dist = min_dist, metric = metric).fit_transform(in_embs)
d3 = umap.UMAP(n_components = 3, n_neighbors = n_neighbors, min_dist = min_dist, metric = metric).fit_transform(in_embs)
return [d2,d3] |