File size: 1,307 Bytes
bdf78cc
711dd33
bdf78cc
e3b015a
 
711dd33
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb3245
 
e3b015a
 
 
 
 
 
 
aeb3245
e3b015a
 
711dd33
e3b015a
 
 
 
 
 
 
 
711dd33
e3b015a
711dd33
e3b015a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gradio as gr
import os

api_key = os.environ.get("HUGGINGFACE_API_KEY")

model_list = [
    "stabilityai/stable-diffusion-xl-base-0.9",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-xl-refiner-0.9",
    "stabilityai/stable-diffusion-2-1-base",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-inpainting",
    "stabilityai/stable-diffusion-x4-upscaler",
    "stabilityai/stable-diffusion-2-depth",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1-unclip",
    "helenai/stabilityai-stable-diffusion-2-1-base-ov",
    "helenai/stabilityai-stable-diffusion-2-1-ov",
    "stabilityai/stable-diffusion-2-1-unclip-small"
]

default_model = "stabilityai/stable-diffusion-2"
model_name = gr.inputs.Dropdown(model_list, label="Select Model", default=default_model)
model = None

def load_model(model_name):
    global model
    model = gr.Interface.load(model_name, api_key=api_key)

def predict(inputs):
    return model.predict(inputs)

iface = gr.Interface(
    fn=predict,
    inputs=model,
    outputs="text",
    capture_session=True,
    title="Model Selection App",
    description="Choose a model and input data to make predictions."
)

load_model(default_model)  # Load the default model initially

iface.launch()