File size: 8,474 Bytes
522d000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import requests
import logging
import ftfy
import sys

from langchain_community.document_loaders import (
    AzureAIDocumentIntelligenceLoader,
    BSHTMLLoader,
    CSVLoader,
    Docx2txtLoader,
    OutlookMessageLoader,
    PyPDFLoader,
    TextLoader,
    UnstructuredEPubLoader,
    UnstructuredExcelLoader,
    UnstructuredMarkdownLoader,
    UnstructuredPowerPointLoader,
    UnstructuredRSTLoader,
    UnstructuredXMLLoader,
    YoutubeLoader,
)
from langchain_core.documents import Document
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL

logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])

known_source_ext = [
    "go",
    "py",
    "java",
    "sh",
    "bat",
    "ps1",
    "cmd",
    "js",
    "ts",
    "css",
    "cpp",
    "hpp",
    "h",
    "c",
    "cs",
    "sql",
    "log",
    "ini",
    "pl",
    "pm",
    "r",
    "dart",
    "dockerfile",
    "env",
    "php",
    "hs",
    "hsc",
    "lua",
    "nginxconf",
    "conf",
    "m",
    "mm",
    "plsql",
    "perl",
    "rb",
    "rs",
    "db2",
    "scala",
    "bash",
    "swift",
    "vue",
    "svelte",
    "msg",
    "ex",
    "exs",
    "erl",
    "tsx",
    "jsx",
    "hs",
    "lhs",
    "json",
]


class TikaLoader:
    def __init__(self, url, file_path, mime_type=None):
        self.url = url
        self.file_path = file_path
        self.mime_type = mime_type

    def load(self) -> list[Document]:
        with open(self.file_path, "rb") as f:
            data = f.read()

        if self.mime_type is not None:
            headers = {"Content-Type": self.mime_type}
        else:
            headers = {}

        endpoint = self.url
        if not endpoint.endswith("/"):
            endpoint += "/"
        endpoint += "tika/text"

        r = requests.put(endpoint, data=data, headers=headers)

        if r.ok:
            raw_metadata = r.json()
            text = raw_metadata.get("X-TIKA:content", "<No text content found>").strip()

            if "Content-Type" in raw_metadata:
                headers["Content-Type"] = raw_metadata["Content-Type"]

            log.debug("Tika extracted text: %s", text)

            return [Document(page_content=text, metadata=headers)]
        else:
            raise Exception(f"Error calling Tika: {r.reason}")


class DoclingLoader:
    def __init__(self, url, file_path=None, mime_type=None):
        self.url = url.rstrip("/")
        self.file_path = file_path
        self.mime_type = mime_type

    def load(self) -> list[Document]:
        with open(self.file_path, "rb") as f:
            files = {
                "files": (
                    self.file_path,
                    f,
                    self.mime_type or "application/octet-stream",
                )
            }

            params = {
                "image_export_mode": "placeholder",
                "table_mode": "accurate",
            }

            endpoint = f"{self.url}/v1alpha/convert/file"
            r = requests.post(endpoint, files=files, data=params)

        if r.ok:
            result = r.json()
            document_data = result.get("document", {})
            text = document_data.get("md_content", "<No text content found>")

            metadata = {"Content-Type": self.mime_type} if self.mime_type else {}

            log.debug("Docling extracted text: %s", text)

            return [Document(page_content=text, metadata=metadata)]
        else:
            error_msg = f"Error calling Docling API: {r.reason}"
            if r.text:
                try:
                    error_data = r.json()
                    if "detail" in error_data:
                        error_msg += f" - {error_data['detail']}"
                except Exception:
                    error_msg += f" - {r.text}"
            raise Exception(f"Error calling Docling: {error_msg}")


class Loader:
    def __init__(self, engine: str = "", **kwargs):
        self.engine = engine
        self.kwargs = kwargs

    def load(
        self, filename: str, file_content_type: str, file_path: str
    ) -> list[Document]:
        loader = self._get_loader(filename, file_content_type, file_path)
        docs = loader.load()

        return [
            Document(
                page_content=ftfy.fix_text(doc.page_content), metadata=doc.metadata
            )
            for doc in docs
        ]

    def _get_loader(self, filename: str, file_content_type: str, file_path: str):
        file_ext = filename.split(".")[-1].lower()

        if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
            if file_ext in known_source_ext or (
                file_content_type and file_content_type.find("text/") >= 0
            ):
                loader = TextLoader(file_path, autodetect_encoding=True)
            else:
                loader = TikaLoader(
                    url=self.kwargs.get("TIKA_SERVER_URL"),
                    file_path=file_path,
                    mime_type=file_content_type,
                )
        elif self.engine == "docling" and self.kwargs.get("DOCLING_SERVER_URL"):
            loader = DoclingLoader(
                url=self.kwargs.get("DOCLING_SERVER_URL"),
                file_path=file_path,
                mime_type=file_content_type,
            )
        elif (
            self.engine == "document_intelligence"
            and self.kwargs.get("DOCUMENT_INTELLIGENCE_ENDPOINT") != ""
            and self.kwargs.get("DOCUMENT_INTELLIGENCE_KEY") != ""
            and (
                file_ext in ["pdf", "xls", "xlsx", "docx", "ppt", "pptx"]
                or file_content_type
                in [
                    "application/vnd.ms-excel",
                    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
                    "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
                    "application/vnd.ms-powerpoint",
                    "application/vnd.openxmlformats-officedocument.presentationml.presentation",
                ]
            )
        ):
            loader = AzureAIDocumentIntelligenceLoader(
                file_path=file_path,
                api_endpoint=self.kwargs.get("DOCUMENT_INTELLIGENCE_ENDPOINT"),
                api_key=self.kwargs.get("DOCUMENT_INTELLIGENCE_KEY"),
            )
        else:
            if file_ext == "pdf":
                loader = PyPDFLoader(
                    file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
                )
            elif file_ext == "csv":
                loader = CSVLoader(file_path, autodetect_encoding=True)
            elif file_ext == "rst":
                loader = UnstructuredRSTLoader(file_path, mode="elements")
            elif file_ext == "xml":
                loader = UnstructuredXMLLoader(file_path)
            elif file_ext in ["htm", "html"]:
                loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
            elif file_ext == "md":
                loader = TextLoader(file_path, autodetect_encoding=True)
            elif file_content_type == "application/epub+zip":
                loader = UnstructuredEPubLoader(file_path)
            elif (
                file_content_type
                == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
                or file_ext == "docx"
            ):
                loader = Docx2txtLoader(file_path)
            elif file_content_type in [
                "application/vnd.ms-excel",
                "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            ] or file_ext in ["xls", "xlsx"]:
                loader = UnstructuredExcelLoader(file_path)
            elif file_content_type in [
                "application/vnd.ms-powerpoint",
                "application/vnd.openxmlformats-officedocument.presentationml.presentation",
            ] or file_ext in ["ppt", "pptx"]:
                loader = UnstructuredPowerPointLoader(file_path)
            elif file_ext == "msg":
                loader = OutlookMessageLoader(file_path)
            elif file_ext in known_source_ext or (
                file_content_type and file_content_type.find("text/") >= 0
            ):
                loader = TextLoader(file_path, autodetect_encoding=True)
            else:
                loader = TextLoader(file_path, autodetect_encoding=True)

        return loader