|
from opensearchpy import OpenSearch |
|
from opensearchpy.helpers import bulk |
|
from typing import Optional |
|
|
|
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult |
|
from open_webui.config import ( |
|
OPENSEARCH_URI, |
|
OPENSEARCH_SSL, |
|
OPENSEARCH_CERT_VERIFY, |
|
OPENSEARCH_USERNAME, |
|
OPENSEARCH_PASSWORD, |
|
) |
|
|
|
|
|
class OpenSearchClient: |
|
def __init__(self): |
|
self.index_prefix = "open_webui" |
|
self.client = OpenSearch( |
|
hosts=[OPENSEARCH_URI], |
|
use_ssl=OPENSEARCH_SSL, |
|
verify_certs=OPENSEARCH_CERT_VERIFY, |
|
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD), |
|
) |
|
|
|
def _get_index_name(self, collection_name: str) -> str: |
|
return f"{self.index_prefix}_{collection_name}" |
|
|
|
def _result_to_get_result(self, result) -> GetResult: |
|
if not result["hits"]["hits"]: |
|
return None |
|
|
|
ids = [] |
|
documents = [] |
|
metadatas = [] |
|
|
|
for hit in result["hits"]["hits"]: |
|
ids.append(hit["_id"]) |
|
documents.append(hit["_source"].get("text")) |
|
metadatas.append(hit["_source"].get("metadata")) |
|
|
|
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas]) |
|
|
|
def _result_to_search_result(self, result) -> SearchResult: |
|
if not result["hits"]["hits"]: |
|
return None |
|
|
|
ids = [] |
|
distances = [] |
|
documents = [] |
|
metadatas = [] |
|
|
|
for hit in result["hits"]["hits"]: |
|
ids.append(hit["_id"]) |
|
distances.append(hit["_score"]) |
|
documents.append(hit["_source"].get("text")) |
|
metadatas.append(hit["_source"].get("metadata")) |
|
|
|
return SearchResult( |
|
ids=[ids], |
|
distances=[distances], |
|
documents=[documents], |
|
metadatas=[metadatas], |
|
) |
|
|
|
def _create_index(self, collection_name: str, dimension: int): |
|
body = { |
|
"settings": {"index": {"knn": True}}, |
|
"mappings": { |
|
"properties": { |
|
"id": {"type": "keyword"}, |
|
"vector": { |
|
"type": "knn_vector", |
|
"dimension": dimension, |
|
"index": True, |
|
"similarity": "faiss", |
|
"method": { |
|
"name": "hnsw", |
|
"space_type": "innerproduct", |
|
"engine": "faiss", |
|
"parameters": { |
|
"ef_construction": 128, |
|
"m": 16, |
|
}, |
|
}, |
|
}, |
|
"text": {"type": "text"}, |
|
"metadata": {"type": "object"}, |
|
} |
|
}, |
|
} |
|
self.client.indices.create( |
|
index=self._get_index_name(collection_name), body=body |
|
) |
|
|
|
def _create_batches(self, items: list[VectorItem], batch_size=100): |
|
for i in range(0, len(items), batch_size): |
|
yield items[i : i + batch_size] |
|
|
|
def has_collection(self, collection_name: str) -> bool: |
|
|
|
|
|
return self.client.indices.exists(index=self._get_index_name(collection_name)) |
|
|
|
def delete_collection(self, collection_name: str): |
|
|
|
|
|
self.client.indices.delete(index=self._get_index_name(collection_name)) |
|
|
|
def search( |
|
self, collection_name: str, vectors: list[list[float | int]], limit: int |
|
) -> Optional[SearchResult]: |
|
try: |
|
if not self.has_collection(collection_name): |
|
return None |
|
|
|
query = { |
|
"size": limit, |
|
"_source": ["text", "metadata"], |
|
"query": { |
|
"script_score": { |
|
"query": {"match_all": {}}, |
|
"script": { |
|
"source": "(cosineSimilarity(params.query_value, doc[params.field]) + 1.0) / 2.0", |
|
"params": { |
|
"field": "vector", |
|
"query_value": vectors[0], |
|
}, |
|
}, |
|
} |
|
}, |
|
} |
|
|
|
result = self.client.search( |
|
index=self._get_index_name(collection_name), body=query |
|
) |
|
|
|
return self._result_to_search_result(result) |
|
|
|
except Exception as e: |
|
return None |
|
|
|
def query( |
|
self, collection_name: str, filter: dict, limit: Optional[int] = None |
|
) -> Optional[GetResult]: |
|
if not self.has_collection(collection_name): |
|
return None |
|
|
|
query_body = { |
|
"query": {"bool": {"filter": []}}, |
|
"_source": ["text", "metadata"], |
|
} |
|
|
|
for field, value in filter.items(): |
|
query_body["query"]["bool"]["filter"].append( |
|
{"match": {"metadata." + str(field): value}} |
|
) |
|
|
|
size = limit if limit else 10 |
|
|
|
try: |
|
result = self.client.search( |
|
index=self._get_index_name(collection_name), |
|
body=query_body, |
|
size=size, |
|
) |
|
|
|
return self._result_to_get_result(result) |
|
|
|
except Exception as e: |
|
return None |
|
|
|
def _create_index_if_not_exists(self, collection_name: str, dimension: int): |
|
if not self.has_collection(collection_name): |
|
self._create_index(collection_name, dimension) |
|
|
|
def get(self, collection_name: str) -> Optional[GetResult]: |
|
query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]} |
|
|
|
result = self.client.search( |
|
index=self._get_index_name(collection_name), body=query |
|
) |
|
return self._result_to_get_result(result) |
|
|
|
def insert(self, collection_name: str, items: list[VectorItem]): |
|
self._create_index_if_not_exists( |
|
collection_name=collection_name, dimension=len(items[0]["vector"]) |
|
) |
|
|
|
for batch in self._create_batches(items): |
|
actions = [ |
|
{ |
|
"_op_type": "index", |
|
"_index": self._get_index_name(collection_name), |
|
"_id": item["id"], |
|
"_source": { |
|
"vector": item["vector"], |
|
"text": item["text"], |
|
"metadata": item["metadata"], |
|
}, |
|
} |
|
for item in batch |
|
] |
|
bulk(self.client, actions) |
|
|
|
def upsert(self, collection_name: str, items: list[VectorItem]): |
|
self._create_index_if_not_exists( |
|
collection_name=collection_name, dimension=len(items[0]["vector"]) |
|
) |
|
|
|
for batch in self._create_batches(items): |
|
actions = [ |
|
{ |
|
"_op_type": "update", |
|
"_index": self._get_index_name(collection_name), |
|
"_id": item["id"], |
|
"doc": { |
|
"vector": item["vector"], |
|
"text": item["text"], |
|
"metadata": item["metadata"], |
|
}, |
|
"doc_as_upsert": True, |
|
} |
|
for item in batch |
|
] |
|
bulk(self.client, actions) |
|
|
|
def delete( |
|
self, |
|
collection_name: str, |
|
ids: Optional[list[str]] = None, |
|
filter: Optional[dict] = None, |
|
): |
|
if ids: |
|
actions = [ |
|
{ |
|
"_op_type": "delete", |
|
"_index": self._get_index_name(collection_name), |
|
"_id": id, |
|
} |
|
for id in ids |
|
] |
|
bulk(self.client, actions) |
|
elif filter: |
|
query_body = { |
|
"query": {"bool": {"filter": []}}, |
|
} |
|
for field, value in filter.items(): |
|
query_body["query"]["bool"]["filter"].append( |
|
{"match": {"metadata." + str(field): value}} |
|
) |
|
self.client.delete_by_query( |
|
index=self._get_index_name(collection_name), body=query_body |
|
) |
|
|
|
def reset(self): |
|
indices = self.client.indices.get(index=f"{self.index_prefix}_*") |
|
for index in indices: |
|
self.client.indices.delete(index=index) |
|
|