|
import hashlib |
|
import json |
|
import logging |
|
import os |
|
import uuid |
|
from functools import lru_cache |
|
from pathlib import Path |
|
from pydub import AudioSegment |
|
from pydub.silence import split_on_silence |
|
|
|
import aiohttp |
|
import aiofiles |
|
import requests |
|
import mimetypes |
|
|
|
from fastapi import ( |
|
Depends, |
|
FastAPI, |
|
File, |
|
HTTPException, |
|
Request, |
|
UploadFile, |
|
status, |
|
APIRouter, |
|
) |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import FileResponse |
|
from pydantic import BaseModel |
|
|
|
|
|
from open_webui.utils.auth import get_admin_user, get_verified_user |
|
from open_webui.config import ( |
|
WHISPER_MODEL_AUTO_UPDATE, |
|
WHISPER_MODEL_DIR, |
|
CACHE_DIR, |
|
) |
|
|
|
from open_webui.constants import ERROR_MESSAGES |
|
from open_webui.env import ( |
|
AIOHTTP_CLIENT_TIMEOUT, |
|
ENV, |
|
SRC_LOG_LEVELS, |
|
DEVICE_TYPE, |
|
ENABLE_FORWARD_USER_INFO_HEADERS, |
|
) |
|
|
|
|
|
router = APIRouter() |
|
|
|
|
|
MAX_FILE_SIZE_MB = 25 |
|
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 |
|
|
|
log = logging.getLogger(__name__) |
|
log.setLevel(SRC_LOG_LEVELS["AUDIO"]) |
|
|
|
SPEECH_CACHE_DIR = CACHE_DIR / "audio" / "speech" |
|
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pydub import AudioSegment |
|
from pydub.utils import mediainfo |
|
|
|
|
|
def is_mp4_audio(file_path): |
|
"""Check if the given file is an MP4 audio file.""" |
|
if not os.path.isfile(file_path): |
|
log.error(f"File not found: {file_path}") |
|
return False |
|
|
|
info = mediainfo(file_path) |
|
if ( |
|
info.get("codec_name") == "aac" |
|
and info.get("codec_type") == "audio" |
|
and info.get("codec_tag_string") == "mp4a" |
|
): |
|
return True |
|
return False |
|
|
|
|
|
def convert_mp4_to_wav(file_path, output_path): |
|
"""Convert MP4 audio file to WAV format.""" |
|
audio = AudioSegment.from_file(file_path, format="mp4") |
|
audio.export(output_path, format="wav") |
|
log.info(f"Converted {file_path} to {output_path}") |
|
|
|
|
|
def set_faster_whisper_model(model: str, auto_update: bool = False): |
|
whisper_model = None |
|
if model: |
|
from faster_whisper import WhisperModel |
|
|
|
faster_whisper_kwargs = { |
|
"model_size_or_path": model, |
|
"device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu", |
|
"compute_type": "int8", |
|
"download_root": WHISPER_MODEL_DIR, |
|
"local_files_only": not auto_update, |
|
} |
|
|
|
try: |
|
whisper_model = WhisperModel(**faster_whisper_kwargs) |
|
except Exception: |
|
log.warning( |
|
"WhisperModel initialization failed, attempting download with local_files_only=False" |
|
) |
|
faster_whisper_kwargs["local_files_only"] = False |
|
whisper_model = WhisperModel(**faster_whisper_kwargs) |
|
return whisper_model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TTSConfigForm(BaseModel): |
|
OPENAI_API_BASE_URL: str |
|
OPENAI_API_KEY: str |
|
API_KEY: str |
|
ENGINE: str |
|
MODEL: str |
|
VOICE: str |
|
SPLIT_ON: str |
|
AZURE_SPEECH_REGION: str |
|
AZURE_SPEECH_OUTPUT_FORMAT: str |
|
|
|
|
|
class STTConfigForm(BaseModel): |
|
OPENAI_API_BASE_URL: str |
|
OPENAI_API_KEY: str |
|
ENGINE: str |
|
MODEL: str |
|
WHISPER_MODEL: str |
|
DEEPGRAM_API_KEY: str |
|
|
|
|
|
class AudioConfigUpdateForm(BaseModel): |
|
tts: TTSConfigForm |
|
stt: STTConfigForm |
|
|
|
|
|
@router.get("/config") |
|
async def get_audio_config(request: Request, user=Depends(get_admin_user)): |
|
return { |
|
"tts": { |
|
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY, |
|
"API_KEY": request.app.state.config.TTS_API_KEY, |
|
"ENGINE": request.app.state.config.TTS_ENGINE, |
|
"MODEL": request.app.state.config.TTS_MODEL, |
|
"VOICE": request.app.state.config.TTS_VOICE, |
|
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON, |
|
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION, |
|
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, |
|
}, |
|
"stt": { |
|
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY, |
|
"ENGINE": request.app.state.config.STT_ENGINE, |
|
"MODEL": request.app.state.config.STT_MODEL, |
|
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL, |
|
"DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY, |
|
}, |
|
} |
|
|
|
|
|
@router.post("/config/update") |
|
async def update_audio_config( |
|
request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user) |
|
): |
|
request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL |
|
request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY |
|
request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY |
|
request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE |
|
request.app.state.config.TTS_MODEL = form_data.tts.MODEL |
|
request.app.state.config.TTS_VOICE = form_data.tts.VOICE |
|
request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON |
|
request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION |
|
request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = ( |
|
form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT |
|
) |
|
|
|
request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL |
|
request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY |
|
request.app.state.config.STT_ENGINE = form_data.stt.ENGINE |
|
request.app.state.config.STT_MODEL = form_data.stt.MODEL |
|
request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL |
|
request.app.state.config.DEEPGRAM_API_KEY = form_data.stt.DEEPGRAM_API_KEY |
|
|
|
if request.app.state.config.STT_ENGINE == "": |
|
request.app.state.faster_whisper_model = set_faster_whisper_model( |
|
form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE |
|
) |
|
|
|
return { |
|
"tts": { |
|
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY, |
|
"API_KEY": request.app.state.config.TTS_API_KEY, |
|
"ENGINE": request.app.state.config.TTS_ENGINE, |
|
"MODEL": request.app.state.config.TTS_MODEL, |
|
"VOICE": request.app.state.config.TTS_VOICE, |
|
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON, |
|
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION, |
|
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, |
|
}, |
|
"stt": { |
|
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY, |
|
"ENGINE": request.app.state.config.STT_ENGINE, |
|
"MODEL": request.app.state.config.STT_MODEL, |
|
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL, |
|
"DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY, |
|
}, |
|
} |
|
|
|
|
|
def load_speech_pipeline(request): |
|
from transformers import pipeline |
|
from datasets import load_dataset |
|
|
|
if request.app.state.speech_synthesiser is None: |
|
request.app.state.speech_synthesiser = pipeline( |
|
"text-to-speech", "microsoft/speecht5_tts" |
|
) |
|
|
|
if request.app.state.speech_speaker_embeddings_dataset is None: |
|
request.app.state.speech_speaker_embeddings_dataset = load_dataset( |
|
"Matthijs/cmu-arctic-xvectors", split="validation" |
|
) |
|
|
|
|
|
@router.post("/speech") |
|
async def speech(request: Request, user=Depends(get_verified_user)): |
|
body = await request.body() |
|
name = hashlib.sha256( |
|
body |
|
+ str(request.app.state.config.TTS_ENGINE).encode("utf-8") |
|
+ str(request.app.state.config.TTS_MODEL).encode("utf-8") |
|
).hexdigest() |
|
|
|
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3") |
|
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json") |
|
|
|
|
|
if file_path.is_file(): |
|
return FileResponse(file_path) |
|
|
|
payload = None |
|
try: |
|
payload = json.loads(body.decode("utf-8")) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException(status_code=400, detail="Invalid JSON payload") |
|
|
|
if request.app.state.config.TTS_ENGINE == "openai": |
|
payload["model"] = request.app.state.config.TTS_MODEL |
|
|
|
try: |
|
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT) |
|
async with aiohttp.ClientSession( |
|
timeout=timeout, trust_env=True |
|
) as session: |
|
async with session.post( |
|
url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech", |
|
json=payload, |
|
headers={ |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}", |
|
**( |
|
{ |
|
"X-OpenWebUI-User-Name": user.name, |
|
"X-OpenWebUI-User-Id": user.id, |
|
"X-OpenWebUI-User-Email": user.email, |
|
"X-OpenWebUI-User-Role": user.role, |
|
} |
|
if ENABLE_FORWARD_USER_INFO_HEADERS |
|
else {} |
|
), |
|
}, |
|
) as r: |
|
r.raise_for_status() |
|
|
|
async with aiofiles.open(file_path, "wb") as f: |
|
await f.write(await r.read()) |
|
|
|
async with aiofiles.open(file_body_path, "w") as f: |
|
await f.write(json.dumps(payload)) |
|
|
|
return FileResponse(file_path) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
detail = None |
|
|
|
try: |
|
if r.status != 200: |
|
res = await r.json() |
|
|
|
if "error" in res: |
|
detail = f"External: {res['error'].get('message', '')}" |
|
except Exception: |
|
detail = f"External: {e}" |
|
|
|
raise HTTPException( |
|
status_code=getattr(r, "status", 500), |
|
detail=detail if detail else "Open WebUI: Server Connection Error", |
|
) |
|
|
|
elif request.app.state.config.TTS_ENGINE == "elevenlabs": |
|
voice_id = payload.get("voice", "") |
|
|
|
if voice_id not in get_available_voices(request): |
|
raise HTTPException( |
|
status_code=400, |
|
detail="Invalid voice id", |
|
) |
|
|
|
try: |
|
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT) |
|
async with aiohttp.ClientSession( |
|
timeout=timeout, trust_env=True |
|
) as session: |
|
async with session.post( |
|
f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}", |
|
json={ |
|
"text": payload["input"], |
|
"model_id": request.app.state.config.TTS_MODEL, |
|
"voice_settings": {"stability": 0.5, "similarity_boost": 0.5}, |
|
}, |
|
headers={ |
|
"Accept": "audio/mpeg", |
|
"Content-Type": "application/json", |
|
"xi-api-key": request.app.state.config.TTS_API_KEY, |
|
}, |
|
) as r: |
|
r.raise_for_status() |
|
|
|
async with aiofiles.open(file_path, "wb") as f: |
|
await f.write(await r.read()) |
|
|
|
async with aiofiles.open(file_body_path, "w") as f: |
|
await f.write(json.dumps(payload)) |
|
|
|
return FileResponse(file_path) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
detail = None |
|
|
|
try: |
|
if r.status != 200: |
|
res = await r.json() |
|
if "error" in res: |
|
detail = f"External: {res['error'].get('message', '')}" |
|
except Exception: |
|
detail = f"External: {e}" |
|
|
|
raise HTTPException( |
|
status_code=getattr(r, "status", 500), |
|
detail=detail if detail else "Open WebUI: Server Connection Error", |
|
) |
|
|
|
elif request.app.state.config.TTS_ENGINE == "azure": |
|
try: |
|
payload = json.loads(body.decode("utf-8")) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException(status_code=400, detail="Invalid JSON payload") |
|
|
|
region = request.app.state.config.TTS_AZURE_SPEECH_REGION |
|
language = request.app.state.config.TTS_VOICE |
|
locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1]) |
|
output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT |
|
|
|
try: |
|
data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}"> |
|
<voice name="{language}">{payload["input"]}</voice> |
|
</speak>""" |
|
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT) |
|
async with aiohttp.ClientSession( |
|
timeout=timeout, trust_env=True |
|
) as session: |
|
async with session.post( |
|
f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1", |
|
headers={ |
|
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY, |
|
"Content-Type": "application/ssml+xml", |
|
"X-Microsoft-OutputFormat": output_format, |
|
}, |
|
data=data, |
|
) as r: |
|
r.raise_for_status() |
|
|
|
async with aiofiles.open(file_path, "wb") as f: |
|
await f.write(await r.read()) |
|
|
|
async with aiofiles.open(file_body_path, "w") as f: |
|
await f.write(json.dumps(payload)) |
|
|
|
return FileResponse(file_path) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
detail = None |
|
|
|
try: |
|
if r.status != 200: |
|
res = await r.json() |
|
if "error" in res: |
|
detail = f"External: {res['error'].get('message', '')}" |
|
except Exception: |
|
detail = f"External: {e}" |
|
|
|
raise HTTPException( |
|
status_code=getattr(r, "status", 500), |
|
detail=detail if detail else "Open WebUI: Server Connection Error", |
|
) |
|
|
|
elif request.app.state.config.TTS_ENGINE == "transformers": |
|
payload = None |
|
try: |
|
payload = json.loads(body.decode("utf-8")) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException(status_code=400, detail="Invalid JSON payload") |
|
|
|
import torch |
|
import soundfile as sf |
|
|
|
load_speech_pipeline(request) |
|
|
|
embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset |
|
|
|
speaker_index = 6799 |
|
try: |
|
speaker_index = embeddings_dataset["filename"].index( |
|
request.app.state.config.TTS_MODEL |
|
) |
|
except Exception: |
|
pass |
|
|
|
speaker_embedding = torch.tensor( |
|
embeddings_dataset[speaker_index]["xvector"] |
|
).unsqueeze(0) |
|
|
|
speech = request.app.state.speech_synthesiser( |
|
payload["input"], |
|
forward_params={"speaker_embeddings": speaker_embedding}, |
|
) |
|
|
|
sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"]) |
|
|
|
async with aiofiles.open(file_body_path, "w") as f: |
|
await f.write(json.dumps(payload)) |
|
|
|
return FileResponse(file_path) |
|
|
|
|
|
def transcribe(request: Request, file_path): |
|
log.info(f"transcribe: {file_path}") |
|
filename = os.path.basename(file_path) |
|
file_dir = os.path.dirname(file_path) |
|
id = filename.split(".")[0] |
|
|
|
if request.app.state.config.STT_ENGINE == "": |
|
if request.app.state.faster_whisper_model is None: |
|
request.app.state.faster_whisper_model = set_faster_whisper_model( |
|
request.app.state.config.WHISPER_MODEL |
|
) |
|
|
|
model = request.app.state.faster_whisper_model |
|
segments, info = model.transcribe(file_path, beam_size=5) |
|
log.info( |
|
"Detected language '%s' with probability %f" |
|
% (info.language, info.language_probability) |
|
) |
|
|
|
transcript = "".join([segment.text for segment in list(segments)]) |
|
data = {"text": transcript.strip()} |
|
|
|
|
|
transcript_file = f"{file_dir}/{id}.json" |
|
with open(transcript_file, "w") as f: |
|
json.dump(data, f) |
|
|
|
log.debug(data) |
|
return data |
|
elif request.app.state.config.STT_ENGINE == "openai": |
|
if is_mp4_audio(file_path): |
|
os.rename(file_path, file_path.replace(".wav", ".mp4")) |
|
|
|
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path) |
|
|
|
r = None |
|
try: |
|
r = requests.post( |
|
url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions", |
|
headers={ |
|
"Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}" |
|
}, |
|
files={"file": (filename, open(file_path, "rb"))}, |
|
data={"model": request.app.state.config.STT_MODEL}, |
|
) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
|
|
transcript_file = f"{file_dir}/{id}.json" |
|
with open(transcript_file, "w") as f: |
|
json.dump(data, f) |
|
|
|
return data |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
detail = None |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "error" in res: |
|
detail = f"External: {res['error'].get('message', '')}" |
|
except Exception: |
|
detail = f"External: {e}" |
|
|
|
raise Exception(detail if detail else "Open WebUI: Server Connection Error") |
|
|
|
elif request.app.state.config.STT_ENGINE == "deepgram": |
|
try: |
|
|
|
mime, _ = mimetypes.guess_type(file_path) |
|
if not mime: |
|
mime = "audio/wav" |
|
|
|
|
|
with open(file_path, "rb") as f: |
|
file_data = f.read() |
|
|
|
|
|
headers = { |
|
"Authorization": f"Token {request.app.state.config.DEEPGRAM_API_KEY}", |
|
"Content-Type": mime, |
|
} |
|
|
|
|
|
params = {} |
|
if request.app.state.config.STT_MODEL: |
|
params["model"] = request.app.state.config.STT_MODEL |
|
|
|
|
|
r = requests.post( |
|
"https://api.deepgram.com/v1/listen", |
|
headers=headers, |
|
params=params, |
|
data=file_data, |
|
) |
|
r.raise_for_status() |
|
response_data = r.json() |
|
|
|
|
|
try: |
|
transcript = response_data["results"]["channels"][0]["alternatives"][ |
|
0 |
|
].get("transcript", "") |
|
except (KeyError, IndexError) as e: |
|
log.error(f"Malformed response from Deepgram: {str(e)}") |
|
raise Exception( |
|
"Failed to parse Deepgram response - unexpected response format" |
|
) |
|
data = {"text": transcript.strip()} |
|
|
|
|
|
transcript_file = f"{file_dir}/{id}.json" |
|
with open(transcript_file, "w") as f: |
|
json.dump(data, f) |
|
|
|
return data |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
detail = None |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "error" in res: |
|
detail = f"External: {res['error'].get('message', '')}" |
|
except Exception: |
|
detail = f"External: {e}" |
|
raise Exception(detail if detail else "Open WebUI: Server Connection Error") |
|
|
|
|
|
def compress_audio(file_path): |
|
if os.path.getsize(file_path) > MAX_FILE_SIZE: |
|
file_dir = os.path.dirname(file_path) |
|
audio = AudioSegment.from_file(file_path) |
|
audio = audio.set_frame_rate(16000).set_channels(1) |
|
compressed_path = f"{file_dir}/{id}_compressed.opus" |
|
audio.export(compressed_path, format="opus", bitrate="32k") |
|
log.debug(f"Compressed audio to {compressed_path}") |
|
|
|
if ( |
|
os.path.getsize(compressed_path) > MAX_FILE_SIZE |
|
): |
|
raise Exception(ERROR_MESSAGES.FILE_TOO_LARGE(size=f"{MAX_FILE_SIZE_MB}MB")) |
|
return compressed_path |
|
else: |
|
return file_path |
|
|
|
|
|
@router.post("/transcriptions") |
|
def transcription( |
|
request: Request, |
|
file: UploadFile = File(...), |
|
user=Depends(get_verified_user), |
|
): |
|
log.info(f"file.content_type: {file.content_type}") |
|
|
|
supported_filetypes = ("audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a") |
|
|
|
if not file.content_type.startswith(supported_filetypes): |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED, |
|
) |
|
|
|
try: |
|
ext = file.filename.split(".")[-1] |
|
id = uuid.uuid4() |
|
|
|
filename = f"{id}.{ext}" |
|
contents = file.file.read() |
|
|
|
file_dir = f"{CACHE_DIR}/audio/transcriptions" |
|
os.makedirs(file_dir, exist_ok=True) |
|
file_path = f"{file_dir}/{filename}" |
|
|
|
with open(file_path, "wb") as f: |
|
f.write(contents) |
|
|
|
try: |
|
try: |
|
file_path = compress_audio(file_path) |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
data = transcribe(request, file_path) |
|
file_path = file_path.split("/")[-1] |
|
return {**data, "filename": file_path} |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
|
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
def get_available_models(request: Request) -> list[dict]: |
|
available_models = [] |
|
if request.app.state.config.TTS_ENGINE == "openai": |
|
|
|
if not request.app.state.config.TTS_OPENAI_API_BASE_URL.startswith( |
|
"https://api.openai.com" |
|
): |
|
try: |
|
response = requests.get( |
|
f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/models" |
|
) |
|
response.raise_for_status() |
|
data = response.json() |
|
available_models = data.get("models", []) |
|
except Exception as e: |
|
log.error(f"Error fetching models from custom endpoint: {str(e)}") |
|
available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}] |
|
else: |
|
available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}] |
|
elif request.app.state.config.TTS_ENGINE == "elevenlabs": |
|
try: |
|
response = requests.get( |
|
"https://api.elevenlabs.io/v1/models", |
|
headers={ |
|
"xi-api-key": request.app.state.config.TTS_API_KEY, |
|
"Content-Type": "application/json", |
|
}, |
|
timeout=5, |
|
) |
|
response.raise_for_status() |
|
models = response.json() |
|
|
|
available_models = [ |
|
{"name": model["name"], "id": model["model_id"]} for model in models |
|
] |
|
except requests.RequestException as e: |
|
log.error(f"Error fetching voices: {str(e)}") |
|
return available_models |
|
|
|
|
|
@router.get("/models") |
|
async def get_models(request: Request, user=Depends(get_verified_user)): |
|
return {"models": get_available_models(request)} |
|
|
|
|
|
def get_available_voices(request) -> dict: |
|
"""Returns {voice_id: voice_name} dict""" |
|
available_voices = {} |
|
if request.app.state.config.TTS_ENGINE == "openai": |
|
|
|
if not request.app.state.config.TTS_OPENAI_API_BASE_URL.startswith( |
|
"https://api.openai.com" |
|
): |
|
try: |
|
response = requests.get( |
|
f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/voices" |
|
) |
|
response.raise_for_status() |
|
data = response.json() |
|
voices_list = data.get("voices", []) |
|
available_voices = {voice["id"]: voice["name"] for voice in voices_list} |
|
except Exception as e: |
|
log.error(f"Error fetching voices from custom endpoint: {str(e)}") |
|
available_voices = { |
|
"alloy": "alloy", |
|
"echo": "echo", |
|
"fable": "fable", |
|
"onyx": "onyx", |
|
"nova": "nova", |
|
"shimmer": "shimmer", |
|
} |
|
else: |
|
available_voices = { |
|
"alloy": "alloy", |
|
"echo": "echo", |
|
"fable": "fable", |
|
"onyx": "onyx", |
|
"nova": "nova", |
|
"shimmer": "shimmer", |
|
} |
|
elif request.app.state.config.TTS_ENGINE == "elevenlabs": |
|
try: |
|
available_voices = get_elevenlabs_voices( |
|
api_key=request.app.state.config.TTS_API_KEY |
|
) |
|
except Exception: |
|
|
|
pass |
|
elif request.app.state.config.TTS_ENGINE == "azure": |
|
try: |
|
region = request.app.state.config.TTS_AZURE_SPEECH_REGION |
|
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list" |
|
headers = { |
|
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY |
|
} |
|
|
|
response = requests.get(url, headers=headers) |
|
response.raise_for_status() |
|
voices = response.json() |
|
|
|
for voice in voices: |
|
available_voices[voice["ShortName"]] = ( |
|
f"{voice['DisplayName']} ({voice['ShortName']})" |
|
) |
|
except requests.RequestException as e: |
|
log.error(f"Error fetching voices: {str(e)}") |
|
|
|
return available_voices |
|
|
|
|
|
@lru_cache |
|
def get_elevenlabs_voices(api_key: str) -> dict: |
|
""" |
|
Note, set the following in your .env file to use Elevenlabs: |
|
AUDIO_TTS_ENGINE=elevenlabs |
|
AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key |
|
AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices |
|
AUDIO_TTS_MODEL=eleven_multilingual_v2 |
|
""" |
|
|
|
try: |
|
|
|
response = requests.get( |
|
"https://api.elevenlabs.io/v1/voices", |
|
headers={ |
|
"xi-api-key": api_key, |
|
"Content-Type": "application/json", |
|
}, |
|
) |
|
response.raise_for_status() |
|
voices_data = response.json() |
|
|
|
voices = {} |
|
for voice in voices_data.get("voices", []): |
|
voices[voice["voice_id"]] = voice["name"] |
|
except requests.RequestException as e: |
|
|
|
log.error(f"Error fetching voices: {str(e)}") |
|
raise RuntimeError(f"Error fetching voices: {str(e)}") |
|
|
|
return voices |
|
|
|
|
|
@router.get("/voices") |
|
async def get_voices(request: Request, user=Depends(get_verified_user)): |
|
return { |
|
"voices": [ |
|
{"id": k, "name": v} for k, v in get_available_voices(request).items() |
|
] |
|
} |
|
|