File size: 729 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from transformers import pipeline

import gradio as gr

asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
classifier = pipeline("text-classification")

def speech_to_text(speech):
    text = asr(speech)["text"]  # type: ignore
    return text

def text_to_sentiment(text):
    return classifier(text)[0]["label"]  # type: ignore

demo = gr.Blocks()

with demo:
    audio_file = gr.Audio(type="filepath")
    text = gr.Textbox()
    label = gr.Label()

    b1 = gr.Button("Recognize Speech")
    b2 = gr.Button("Classify Sentiment")

    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    b2.click(text_to_sentiment, inputs=text, outputs=label)

if __name__ == "__main__":
    demo.launch()