File size: 2,359 Bytes
0ad74ed
1
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_xray"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "disease_values = [0.25, 0.5, 0.75]\n", "\n", "def xray_model(diseases, img):\n", "    return [{disease: disease_values[idx] for idx,disease in enumerate(diseases)}]\n", "\n", "def ct_model(diseases, img):\n", "    return [{disease: 0.1 for disease in diseases}]\n", "\n", "with gr.Blocks(fill_width=True) as demo:\n", "    gr.Markdown(\n", "        \"\"\"\n", "# Detect Disease From Scan\n", "With this model you can lorem ipsum\n", "- ipsum 1\n", "- ipsum 2\n", "\"\"\"\n", "    )\n", "    gr.DuplicateButton()\n", "    disease = gr.CheckboxGroup(\n", "        info=\"Select the diseases you want to scan for.\",\n", "        choices=[\"Covid\", \"Malaria\", \"Lung Cancer\"], label=\"Disease to Scan For\"\n", "    )\n", "    slider = gr.Slider(0, 100)\n", "\n", "    with gr.Tab(\"X-ray\") as x_tab:\n", "        with gr.Row():\n", "            xray_scan = gr.Image()\n", "            xray_results = gr.JSON()\n", "        xray_run = gr.Button(\"Run\")\n", "        xray_run.click(\n", "            xray_model,\n", "            inputs=[disease, xray_scan],\n", "            outputs=xray_results,\n", "            api_name=\"xray_model\"\n", "        )\n", "\n", "    with gr.Tab(\"CT Scan\"):\n", "        with gr.Row():\n", "            ct_scan = gr.Image()\n", "            ct_results = gr.JSON()\n", "        ct_run = gr.Button(\"Run\")\n", "        ct_run.click(\n", "            ct_model,\n", "            inputs=[disease, ct_scan],\n", "            outputs=ct_results,\n", "            api_name=\"ct_model\"\n", "        )\n", "\n", "    upload_btn = gr.Button(\"Upload Results\", variant=\"primary\")\n", "    upload_btn.click(\n", "        lambda ct, xr: None,\n", "        inputs=[ct_results, xray_results],\n", "        outputs=[],\n", "    )\n", "\n", "if __name__ == \"__main__\":\n", "    demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}