File size: 1,526 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
disease_values = [0.25, 0.5, 0.75]
def xray_model(diseases, img):
return [{disease: disease_values[idx] for idx,disease in enumerate(diseases)}]
def ct_model(diseases, img):
return [{disease: 0.1 for disease in diseases}]
with gr.Blocks(fill_width=True) as demo:
gr.Markdown(
"""
# Detect Disease From Scan
With this model you can lorem ipsum
- ipsum 1
- ipsum 2
"""
)
gr.DuplicateButton()
disease = gr.CheckboxGroup(
info="Select the diseases you want to scan for.",
choices=["Covid", "Malaria", "Lung Cancer"], label="Disease to Scan For"
)
slider = gr.Slider(0, 100)
with gr.Tab("X-ray") as x_tab:
with gr.Row():
xray_scan = gr.Image()
xray_results = gr.JSON()
xray_run = gr.Button("Run")
xray_run.click(
xray_model,
inputs=[disease, xray_scan],
outputs=xray_results,
api_name="xray_model"
)
with gr.Tab("CT Scan"):
with gr.Row():
ct_scan = gr.Image()
ct_results = gr.JSON()
ct_run = gr.Button("Run")
ct_run.click(
ct_model,
inputs=[disease, ct_scan],
outputs=ct_results,
api_name="ct_model"
)
upload_btn = gr.Button("Upload Results", variant="primary")
upload_btn.click(
lambda ct, xr: None,
inputs=[ct_results, xray_results],
outputs=[],
)
if __name__ == "__main__":
demo.launch()
|