File size: 11,098 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
from __future__ import annotations
import json
import warnings
from collections.abc import Callable, Sequence, Set
from typing import (
TYPE_CHECKING,
Any,
Literal,
)
import pandas as pd
from gradio_client.documentation import document
from gradio.components.base import Component
from gradio.data_classes import GradioModel
from gradio.events import Events
if TYPE_CHECKING:
from gradio.components import Timer
class PlotData(GradioModel):
columns: list[str]
data: list[list[Any]]
datatypes: dict[str, Literal["quantitative", "nominal", "temporal"]]
mark: str
class NativePlot(Component):
"""
Creates a native Gradio plot component to display data from a pandas DataFrame. Supports interactivity and updates.
Demos: native_plots
"""
EVENTS = [Events.select, Events.double_click]
def __init__(
self,
value: pd.DataFrame | Callable | None = None,
x: str | None = None,
y: str | None = None,
*,
color: str | None = None,
title: str | None = None,
x_title: str | None = None,
y_title: str | None = None,
color_title: str | None = None,
x_bin: str | float | None = None,
y_aggregate: Literal["sum", "mean", "median", "min", "max", "count"]
| None = None,
color_map: dict[str, str] | None = None,
x_lim: list[float] | None = None,
y_lim: list[float] | None = None,
x_label_angle: float = 0,
y_label_angle: float = 0,
x_axis_labels_visible: bool = True,
caption: str | None = None,
sort: Literal["x", "y", "-x", "-y"] | list[str] | None = None,
height: int | None = None,
label: str | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
every: Timer | float | None = None,
inputs: Component | Sequence[Component] | Set[Component] | None = None,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
**kwargs,
):
"""
Parameters:
value: The pandas dataframe containing the data to display in the plot.
x: Column corresponding to the x axis. Column can be numeric, datetime, or string/category.
y: Column corresponding to the y axis. Column must be numeric.
color: Column corresponding to series, visualized by color. Column must be string/category.
title: The title to display on top of the chart.
x_title: The title given to the x axis. By default, uses the value of the x parameter.
y_title: The title given to the y axis. By default, uses the value of the y parameter.
color_title: The title given to the color legend. By default, uses the value of color parameter.
x_bin: Grouping used to cluster x values. If x column is numeric, should be number to bin the x values. If x column is datetime, should be string such as "1h", "15m", "10s", using "s", "m", "h", "d" suffixes.
y_aggregate: Aggregation function used to aggregate y values, used if x_bin is provided or x is a string/category. Must be one of "sum", "mean", "median", "min", "max".
color_map: Mapping of series to color names or codes. For example, {"success": "green", "fail": "#FF8888"}.
height: The height of the plot in pixels.
x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. If x column is datetime type, x_lim should be timestamps.
y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max].
x_label_angle: The angle of the x-axis labels in degrees offset clockwise.
y_label_angle: The angle of the y-axis labels in degrees offset clockwise.
x_axis_labels_visible: Whether the x-axis labels should be visible. Can be hidden when many x-axis labels are present.
caption: The (optional) caption to display below the plot.
sort: The sorting order of the x values, if x column is type string/category. Can be "x", "y", "-x", "-y", or list of strings that represent the order of the categories.
height: The height of the plot in pixels.
label: The (optional) label to display on the top left corner of the plot.
show_label: Whether the label should be displayed.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
visible: Whether the plot should be visible.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
"""
self.x = x
self.y = y
self.color = color
self.title = title
self.x_title = x_title
self.y_title = y_title
self.color_title = color_title
self.x_bin = x_bin
self.y_aggregate = y_aggregate
self.color_map = color_map
self.x_lim = x_lim
self.y_lim = y_lim
self.x_label_angle = x_label_angle
self.y_label_angle = y_label_angle
self.x_axis_labels_visible = x_axis_labels_visible
self.caption = caption
self.sort = sort
self.height = height
if label is None and show_label is None:
show_label = False
super().__init__(
value=value,
label=label,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
every=every,
inputs=inputs,
)
for key, val in kwargs.items():
if key == "color_legend_title":
self.color_title = val
if key in [
"stroke_dash",
"overlay_point",
"tooltip",
"x_label_angle",
"y_label_angle",
"interactive",
"show_actions_button",
"color_legend_title",
"width",
]:
warnings.warn(
f"Argument '{key}' has been deprecated.", DeprecationWarning
)
def get_block_name(self) -> str:
return "nativeplot"
def get_mark(self) -> str:
return "native"
def preprocess(self, payload: PlotData | None) -> PlotData | None:
"""
Parameters:
payload: The data to display in a line plot.
Returns:
The data to display in a line plot.
"""
return payload
def postprocess(self, value: pd.DataFrame | dict | None) -> PlotData | None:
"""
Parameters:
value: Expects a pandas DataFrame containing the data to display in the line plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`).
Returns:
The data to display in a line plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "line").
"""
# if None or update
if value is None or isinstance(value, dict):
return value
def get_simplified_type(dtype):
if pd.api.types.is_numeric_dtype(dtype):
return "quantitative"
elif pd.api.types.is_string_dtype(
dtype
) or pd.api.types.is_categorical_dtype(dtype):
return "nominal"
elif pd.api.types.is_datetime64_any_dtype(dtype):
return "temporal"
else:
raise ValueError(f"Unsupported data type: {dtype}")
split_json = json.loads(value.to_json(orient="split", date_unit="ms"))
datatypes = {
col: get_simplified_type(value[col].dtype) for col in value.columns
}
return PlotData(
columns=split_json["columns"],
data=split_json["data"],
datatypes=datatypes,
mark=self.get_mark(),
)
def example_payload(self) -> Any:
return None
def example_value(self) -> Any:
import pandas as pd
return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]})
def api_info(self) -> dict[str, Any]:
return {"type": {}, "description": "any valid json"}
@document()
class BarPlot(NativePlot):
"""
Creates a bar plot component to display data from a pandas DataFrame.
Demos: bar_plot_demo
"""
def get_block_name(self) -> str:
return "nativeplot"
def get_mark(self) -> str:
return "bar"
@document()
class LinePlot(NativePlot):
"""
Creates a line plot component to display data from a pandas DataFrame.
Demos: line_plot_demo
"""
def get_block_name(self) -> str:
return "nativeplot"
def get_mark(self) -> str:
return "line"
@document()
class ScatterPlot(NativePlot):
"""
Creates a scatter plot component to display data from a pandas DataFrame.
Demos: scatter_plot_demo
"""
def get_block_name(self) -> str:
return "nativeplot"
def get_mark(self) -> str:
return "point"
|