File size: 11,098 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from __future__ import annotations

import json
import warnings
from collections.abc import Callable, Sequence, Set
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
)

import pandas as pd
from gradio_client.documentation import document

from gradio.components.base import Component
from gradio.data_classes import GradioModel
from gradio.events import Events

if TYPE_CHECKING:
    from gradio.components import Timer


class PlotData(GradioModel):
    columns: list[str]
    data: list[list[Any]]
    datatypes: dict[str, Literal["quantitative", "nominal", "temporal"]]
    mark: str


class NativePlot(Component):
    """
    Creates a native Gradio plot component to display data from a pandas DataFrame. Supports interactivity and updates.

    Demos: native_plots
    """

    EVENTS = [Events.select, Events.double_click]

    def __init__(
        self,
        value: pd.DataFrame | Callable | None = None,
        x: str | None = None,
        y: str | None = None,
        *,
        color: str | None = None,
        title: str | None = None,
        x_title: str | None = None,
        y_title: str | None = None,
        color_title: str | None = None,
        x_bin: str | float | None = None,
        y_aggregate: Literal["sum", "mean", "median", "min", "max", "count"]
        | None = None,
        color_map: dict[str, str] | None = None,
        x_lim: list[float] | None = None,
        y_lim: list[float] | None = None,
        x_label_angle: float = 0,
        y_label_angle: float = 0,
        x_axis_labels_visible: bool = True,
        caption: str | None = None,
        sort: Literal["x", "y", "-x", "-y"] | list[str] | None = None,
        height: int | None = None,
        label: str | None = None,
        show_label: bool | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        every: Timer | float | None = None,
        inputs: Component | Sequence[Component] | Set[Component] | None = None,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        render: bool = True,
        key: int | str | None = None,
        **kwargs,
    ):
        """
        Parameters:
            value: The pandas dataframe containing the data to display in the plot.
            x: Column corresponding to the x axis. Column can be numeric, datetime, or string/category.
            y: Column corresponding to the y axis. Column must be numeric.
            color: Column corresponding to series, visualized by color. Column must be string/category.
            title: The title to display on top of the chart.
            x_title: The title given to the x axis. By default, uses the value of the x parameter.
            y_title: The title given to the y axis. By default, uses the value of the y parameter.
            color_title: The title given to the color legend. By default, uses the value of color parameter.
            x_bin: Grouping used to cluster x values. If x column is numeric, should be number to bin the x values. If x column is datetime, should be string such as "1h", "15m", "10s", using "s", "m", "h", "d" suffixes.
            y_aggregate: Aggregation function used to aggregate y values, used if x_bin is provided or x is a string/category. Must be one of "sum", "mean", "median", "min", "max".
            color_map: Mapping of series to color names or codes. For example, {"success": "green", "fail": "#FF8888"}.
            height: The height of the plot in pixels.
            x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. If x column is datetime type, x_lim should be timestamps.
            y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max].
            x_label_angle: The angle of the x-axis labels in degrees offset clockwise.
            y_label_angle: The angle of the y-axis labels in degrees offset clockwise.
            x_axis_labels_visible: Whether the x-axis labels should be visible. Can be hidden when many x-axis labels are present.
            caption: The (optional) caption to display below the plot.
            sort: The sorting order of the x values, if x column is type string/category. Can be "x", "y", "-x", "-y", or list of strings that represent the order of the categories.
            height: The height of the plot in pixels.
            label: The (optional) label to display on the top left corner of the plot.
            show_label: Whether the label should be displayed.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
            visible: Whether the plot should be visible.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
            key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
        """
        self.x = x
        self.y = y
        self.color = color
        self.title = title
        self.x_title = x_title
        self.y_title = y_title
        self.color_title = color_title
        self.x_bin = x_bin
        self.y_aggregate = y_aggregate
        self.color_map = color_map
        self.x_lim = x_lim
        self.y_lim = y_lim
        self.x_label_angle = x_label_angle
        self.y_label_angle = y_label_angle
        self.x_axis_labels_visible = x_axis_labels_visible
        self.caption = caption
        self.sort = sort
        self.height = height

        if label is None and show_label is None:
            show_label = False
        super().__init__(
            value=value,
            label=label,
            show_label=show_label,
            container=container,
            scale=scale,
            min_width=min_width,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            key=key,
            every=every,
            inputs=inputs,
        )
        for key, val in kwargs.items():
            if key == "color_legend_title":
                self.color_title = val
            if key in [
                "stroke_dash",
                "overlay_point",
                "tooltip",
                "x_label_angle",
                "y_label_angle",
                "interactive",
                "show_actions_button",
                "color_legend_title",
                "width",
            ]:
                warnings.warn(
                    f"Argument '{key}' has been deprecated.", DeprecationWarning
                )

    def get_block_name(self) -> str:
        return "nativeplot"

    def get_mark(self) -> str:
        return "native"

    def preprocess(self, payload: PlotData | None) -> PlotData | None:
        """
        Parameters:
            payload: The data to display in a line plot.
        Returns:
            The data to display in a line plot.
        """
        return payload

    def postprocess(self, value: pd.DataFrame | dict | None) -> PlotData | None:
        """
        Parameters:
            value: Expects a pandas DataFrame containing the data to display in the line plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`).
        Returns:
            The data to display in a line plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "line").
        """
        # if None or update
        if value is None or isinstance(value, dict):
            return value

        def get_simplified_type(dtype):
            if pd.api.types.is_numeric_dtype(dtype):
                return "quantitative"
            elif pd.api.types.is_string_dtype(
                dtype
            ) or pd.api.types.is_categorical_dtype(dtype):
                return "nominal"
            elif pd.api.types.is_datetime64_any_dtype(dtype):
                return "temporal"
            else:
                raise ValueError(f"Unsupported data type: {dtype}")

        split_json = json.loads(value.to_json(orient="split", date_unit="ms"))
        datatypes = {
            col: get_simplified_type(value[col].dtype) for col in value.columns
        }
        return PlotData(
            columns=split_json["columns"],
            data=split_json["data"],
            datatypes=datatypes,
            mark=self.get_mark(),
        )

    def example_payload(self) -> Any:
        return None

    def example_value(self) -> Any:
        import pandas as pd

        return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]})

    def api_info(self) -> dict[str, Any]:
        return {"type": {}, "description": "any valid json"}


@document()
class BarPlot(NativePlot):
    """
    Creates a bar plot component to display data from a pandas DataFrame.

    Demos: bar_plot_demo
    """

    def get_block_name(self) -> str:
        return "nativeplot"

    def get_mark(self) -> str:
        return "bar"


@document()
class LinePlot(NativePlot):
    """
    Creates a line plot component to display data from a pandas DataFrame.

    Demos: line_plot_demo
    """

    def get_block_name(self) -> str:
        return "nativeplot"

    def get_mark(self) -> str:
        return "line"


@document()
class ScatterPlot(NativePlot):
    """
    Creates a scatter plot component to display data from a pandas DataFrame.

    Demos: scatter_plot_demo
    """

    def get_block_name(self) -> str:
        return "nativeplot"

    def get_mark(self) -> str:
        return "point"