File size: 16,422 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
"""gr.ScatterPlot() component."""
from __future__ import annotations
import warnings
from collections.abc import Callable, Sequence
from typing import TYPE_CHECKING, Any, Literal
from gradio_client.documentation import document
from gradio.components.base import Component
from gradio.components.plot import AltairPlot, AltairPlotData, Plot
if TYPE_CHECKING:
import pandas as pd
from gradio.components import Timer
@document()
class ScatterPlot(Plot):
"""
Creates a scatter plot component to display data from a pandas DataFrame (as output). As this component does
not accept user input, it is rarely used as an input component.
Guides: creating-a-dashboard-from-bigquery-data
"""
data_model = AltairPlotData
def __init__(
self,
value: pd.DataFrame | Callable | None = None,
x: str | None = None,
y: str | None = None,
*,
color: str | None = None,
size: str | None = None,
shape: str | None = None,
title: str | None = None,
tooltip: list[str] | str | None = None,
x_title: str | None = None,
y_title: str | None = None,
x_label_angle: float | None = None,
y_label_angle: float | None = None,
color_legend_title: str | None = None,
size_legend_title: str | None = None,
shape_legend_title: str | None = None,
color_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
size_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
shape_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
height: int | None = None,
width: int | None = None,
x_lim: list[int | float] | None = None,
y_lim: list[int | float] | None = None,
caption: str | None = None,
interactive: bool | None = True,
label: str | None = None,
every: Timer | float | None = None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
show_actions_button: bool = False,
):
"""
Parameters:
value: The pandas dataframe containing the data to display in a scatter plot, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component.
x: Column corresponding to the x axis.
y: Column corresponding to the y axis.
color: The column to determine the point color. If the column contains numeric data, gradio will interpolate the column data so that small values correspond to light colors and large values correspond to dark values.
size: The column used to determine the point size. Should contain numeric data so that gradio can map the data to the point size.
shape: The column used to determine the point shape. Should contain categorical data. Gradio will map each unique value to a different shape.
title: The title to display on top of the chart.
tooltip: The column (or list of columns) to display on the tooltip when a user hovers a point on the plot.
x_title: The title given to the x-axis. By default, uses the value of the x parameter.
y_title: The title given to the y-axis. By default, uses the value of the y parameter.
x_label_angle: The angle for the x axis labels rotation. Positive values are clockwise, and negative values are counter-clockwise.
y_label_angle: The angle for the y axis labels rotation. Positive values are clockwise, and negative values are counter-clockwise.
color_legend_title: The title given to the color legend. By default, uses the value of color parameter.
size_legend_title: The title given to the size legend. By default, uses the value of the size parameter.
shape_legend_title: The title given to the shape legend. By default, uses the value of the shape parameter.
color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation.
size_legend_position: The position of the size legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation.
shape_legend_position: The position of the shape legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation.
height: The height of the plot in pixels.
width: The width of the plot in pixels. If None, expands to fit.
x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max].
y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max].
caption: The (optional) caption to display below the plot.
interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad.
label: The (optional) label to display on the top left corner of the plot.
every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
show_label: Whether the label should be displayed.
visible: Whether the plot should be visible.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
show_actions_button: Whether to show the actions button on the top right corner of the plot.
"""
self.x = x
self.y = y
self.color = color
self.size = size
self.shape = shape
self.tooltip = tooltip
self.title = title
self.x_title = x_title
self.y_title = y_title
self.x_label_angle = x_label_angle
self.y_label_angle = y_label_angle
self.color_legend_title = color_legend_title
self.color_legend_position = color_legend_position
self.size_legend_title = size_legend_title
self.size_legend_position = size_legend_position
self.shape_legend_title = shape_legend_title
self.shape_legend_position = shape_legend_position
self.caption = caption
self.interactive_chart = interactive
if isinstance(width, str):
width = None
warnings.warn(
"Width should be an integer, not a string. Setting width to None."
)
if isinstance(height, str):
warnings.warn(
"Height should be an integer, not a string. Setting height to None."
)
height = None
self.width = width
self.height = height
self.x_lim = x_lim
self.y_lim = y_lim
self.show_actions_button = show_actions_button
if label is None and show_label is None:
show_label = False
super().__init__(
value=value,
label=label,
every=every,
inputs=inputs,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
)
def get_block_name(self) -> str:
return "plot"
@staticmethod
def create_plot(
value: pd.DataFrame,
x: str,
y: str,
color: str | None = None,
size: str | None = None,
shape: str | None = None,
title: str | None = None,
tooltip: list[str] | str | None = None,
x_title: str | None = None,
y_title: str | None = None,
x_label_angle: float | None = None,
y_label_angle: float | None = None,
color_legend_title: str | None = None,
size_legend_title: str | None = None,
shape_legend_title: str | None = None,
color_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
size_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
shape_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
height: int | None = None,
width: int | None = None,
x_lim: list[int | float] | None = None,
y_lim: list[int | float] | None = None,
interactive: bool | None = True,
):
"""Helper for creating the scatter plot."""
import altair as alt
from pandas.api.types import is_numeric_dtype
interactive = True if interactive is None else interactive
encodings = {
"x": alt.X(
x, # type: ignore
title=x_title or x, # type: ignore
scale=AltairPlot.create_scale(x_lim), # type: ignore
axis=alt.Axis(labelAngle=x_label_angle)
if x_label_angle is not None
else alt.Axis(),
), # ignore: type
"y": alt.Y(
y, # type: ignore
title=y_title or y, # type: ignore
scale=AltairPlot.create_scale(y_lim), # type: ignore
axis=alt.Axis(labelAngle=y_label_angle)
if y_label_angle is not None
else alt.Axis(),
),
}
properties = {}
if title:
properties["title"] = title
if height:
properties["height"] = height
if width:
properties["width"] = width
if color:
if is_numeric_dtype(value[color]):
domain = [value[color].min(), value[color].max()]
range_ = [0, 1]
type_ = "quantitative"
else:
domain = value[color].unique().tolist()
range_ = list(range(len(domain)))
type_ = "nominal"
color_legend_position = color_legend_position or "bottom"
encodings["color"] = {
"field": color,
"type": type_,
"legend": AltairPlot.create_legend(
position=color_legend_position, title=color_legend_title
),
"scale": {"domain": domain, "range": range_},
}
if tooltip:
encodings["tooltip"] = tooltip
if size:
encodings["size"] = {
"field": size,
"type": "quantitative" if is_numeric_dtype(value[size]) else "nominal",
"legend": AltairPlot.create_legend(
position=size_legend_position, title=size_legend_title
),
}
if shape:
encodings["shape"] = {
"field": shape,
"type": "quantitative" if is_numeric_dtype(value[shape]) else "nominal",
"legend": AltairPlot.create_legend(
position=shape_legend_position, title=shape_legend_title
),
}
chart = (
alt.Chart(value) # type: ignore
.mark_point(clip=True) # type: ignore
.encode(**encodings)
.properties(background="transparent", **properties)
)
if interactive:
chart = chart.interactive()
return chart
def preprocess(self, payload: AltairPlotData | None) -> AltairPlotData | None:
"""
Parameters:
payload: The data to display in a scatter plot.
Returns:
(Rarely used) passes the data displayed in the scatter plot as an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "scatter").
"""
return payload
def postprocess(
self, value: pd.DataFrame | dict | None
) -> AltairPlotData | dict | None:
"""
Parameters:
value: Expects a pandas DataFrame containing the data to display in the scatter plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`).
Returns:
The data to display in a scatter plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "scatter").
"""
# if None or update
if value is None or isinstance(value, dict):
return value
if self.x is None or self.y is None:
raise ValueError("No value provided for required parameters `x` and `y`.")
chart = self.create_plot(
value=value,
x=self.x,
y=self.y,
color=self.color,
size=self.size,
shape=self.shape,
title=self.title,
tooltip=self.tooltip,
x_title=self.x_title,
y_title=self.y_title,
x_label_angle=self.x_label_angle,
y_label_angle=self.y_label_angle,
color_legend_title=self.color_legend_title,
size_legend_title=self.size_legend_title,
shape_legend_title=self.size_legend_title,
color_legend_position=self.color_legend_position, # type: ignore
size_legend_position=self.size_legend_position, # type: ignore
shape_legend_position=self.shape_legend_position, # type: ignore
interactive=self.interactive_chart,
height=self.height,
width=self.width,
x_lim=self.x_lim,
y_lim=self.y_lim,
)
return AltairPlotData(type="altair", plot=chart.to_json(), chart="scatter")
def example_payload(self) -> Any:
return None
def example_value(self) -> Any:
import pandas as pd
return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]})
|