File size: 37,062 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
"""
This file defines a useful high-level abstraction to build Gradio chatbots: ChatInterface.
"""
from __future__ import annotations
import builtins
import functools
import inspect
import warnings
from collections.abc import AsyncGenerator, Callable, Sequence
from pathlib import Path
from typing import Literal, Union, cast
import anyio
from gradio_client.documentation import document
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
MultimodalTextbox,
State,
Textbox,
get_component_instance,
)
from gradio.components.chatbot import (
ExampleMessage,
FileDataDict,
Message,
MessageDict,
TupleFormat,
)
from gradio.components.multimodal_textbox import MultimodalPostprocess, MultimodalValue
from gradio.context import get_blocks_context
from gradio.events import Dependency, SelectData
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.helpers import special_args, update
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration, async_lambda
@document()
class ChatInterface(Blocks):
"""
ChatInterface is Gradio's high-level abstraction for creating chatbot UIs, and allows you to create
a web-based demo around a chatbot model in a few lines of code. Only one parameter is required: fn, which
takes a function that governs the response of the chatbot based on the user input and chat history. Additional
parameters can be used to control the appearance and behavior of the demo.
Example:
import gradio as gr
def echo(message, history):
return message
demo = gr.ChatInterface(fn=echo, type="messages", examples=[{"text": "hello", "text": "hola", "text": "merhaba"}], title="Echo Bot")
demo.launch()
Demos: chatinterface_multimodal, chatinterface_random_response, chatinterface_streaming_echo
Guides: creating-a-chatbot-fast, sharing-your-app
"""
def __init__(
self,
fn: Callable,
*,
multimodal: bool = False,
type: Literal["messages", "tuples"] = "tuples",
chatbot: Chatbot | None = None,
textbox: Textbox | MultimodalTextbox | None = None,
additional_inputs: str | Component | list[str | Component] | None = None,
additional_inputs_accordion: str | Accordion | None = None,
examples: list[str] | list[MultimodalValue] | list[list] | None = None,
example_labels: list[str] | None = None,
example_icons: list[str] | None = None,
cache_examples: bool | None = None,
cache_mode: Literal["eager", "lazy"] | None = None,
title: str | None = None,
description: str | None = None,
theme: Theme | str | None = None,
css: str | None = None,
css_paths: str | Path | Sequence[str | Path] | None = None,
js: str | None = None,
head: str | None = None,
head_paths: str | Path | Sequence[str | Path] | None = None,
analytics_enabled: bool | None = None,
autofocus: bool = True,
autoscroll: bool = True,
concurrency_limit: int | None | Literal["default"] = "default",
fill_height: bool = True,
delete_cache: tuple[int, int] | None = None,
show_progress: Literal["full", "minimal", "hidden"] = "minimal",
fill_width: bool = False,
submit_btn: str | bool | None = True,
stop_btn: str | bool | None = True,
):
"""
Parameters:
fn: the function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
multimodal: if True, the chat interface will use a gr.MultimodalTextbox component for the input, which allows for the uploading of multimedia files. If False, the chat interface will use a gr.Textbox component for the input.
type: The format of the messages passed into the chat history parameter of `fn`. If "messages", passes the value as a list of dictionaries with openai-style "role" and "content" keys. The "content" key's value should be one of the following - (1) strings in valid Markdown (2) a dictionary with a "path" key and value corresponding to the file to display or (3) an instance of a Gradio component. At the moment Image, Plot, Video, Gallery, Audio, and HTML are supported. The "role" key should be one of 'user' or 'assistant'. Any other roles will not be displayed in the output. If this parameter is 'tuples', expects a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list should have 2 elements: the user message and the response message, but this format is deprecated.
chatbot: an instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
textbox: an instance of the gr.Textbox or gr.MultimodalTextbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox or gr.MultimodalTextbox component will be created.
additional_inputs: an instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
additional_inputs_accordion: if a string is provided, this is the label of the `gr.Accordion` to use to contain additional inputs. A `gr.Accordion` object can be provided as well to configure other properties of the container holding the additional inputs. Defaults to a `gr.Accordion(label="Additional Inputs", open=False)`. This parameter is only used if `additional_inputs` is provided.
examples: sample inputs for the function; if provided, appear within the chatbot and can be clicked to populate the chatbot input. Should be a list of strings if `multimodal` is False, and a list of dictionaries (with keys `text` and `files`) if `multimodal` is True. Should also include values for the additional inputs if they are provided.
example_labels: labels for the examples, to be displayed instead of the examples themselves. If provided, should be a list of strings with the same length as the examples list.
example_icons: icons for the examples, to be displayed above the examples. If provided, should be a list of string URLs or local paths with the same length as the examples list.
cache_examples: if True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
cache_mode: If "lazy", then examples are cached (for all users of the app) after their first use (by any user of the app). If "eager", all examples are cached at app launch. If None, will use the GRADIO_CACHE_MODE environment variable if defined, or default to "eager".
title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
theme: a Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme.
css: Custom css as a code string. This css will be included in the demo webpage.
css_paths: Custom css as a pathlib.Path to a css file or a list of such paths. This css files will be read, concatenated, and included in the demo webpage. If the `css` parameter is also set, the css from `css` will be included first.
js: Custom js as a code string. The custom js should be in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags.
head: Custom html code to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page.
head_paths: Custom html code as a pathlib.Path to a html file or a list of such paths. This html files will be read, concatenated, and included in the head of the demo webpage. If the `head` parameter is also set, the html from `head` will be included first.
analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
autofocus: if True, autofocuses to the textbox when the page loads.
autoscroll: If True, will automatically scroll to the bottom of the textbox when the value changes, unless the user scrolls up. If False, will not scroll to the bottom of the textbox when the value changes.
concurrency_limit: if set, this is the maximum number of chatbot submissions that can be running simultaneously. Can be set to None to mean no limit (any number of chatbot submissions can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `.queue()`, which is 1 by default).
fill_height: if True, the chat interface will expand to the height of window.
delete_cache: a tuple corresponding [frequency, age] both expressed in number of seconds. Every `frequency` seconds, the temporary files created by this Blocks instance will be deleted if more than `age` seconds have passed since the file was created. For example, setting this to (86400, 86400) will delete temporary files every day. The cache will be deleted entirely when the server restarts. If None, no cache deletion will occur.
show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
fill_width: Whether to horizontally expand to fill container fully. If False, centers and constrains app to a maximum width.
submit_btn: If True, will show a submit button with a submit icon within the textbox. If a string, will use that string as the submit button text in place of the icon. If False, will not show a submit button.
stop_btn: If True, will show a button with a stop icon during generator executions, to stop generating. If a string, will use that string as the submit button text in place of the stop icon. If False, will not show a stop button.
"""
super().__init__(
analytics_enabled=analytics_enabled,
mode="chat_interface",
title=title or "Gradio",
theme=theme,
css=css,
css_paths=css_paths,
js=js,
head=head,
head_paths=head_paths,
fill_height=fill_height,
fill_width=fill_width,
delete_cache=delete_cache,
)
self.type: Literal["messages", "tuples"] = type
self.multimodal = multimodal
self.concurrency_limit = concurrency_limit
self.fn = fn
self.is_async = inspect.iscoroutinefunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.is_generator = inspect.isgeneratorfunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.examples = examples
self.cache_examples = cache_examples
self.cache_mode = cache_mode
if additional_inputs:
if not isinstance(additional_inputs, list):
additional_inputs = [additional_inputs]
self.additional_inputs = [
get_component_instance(i)
for i in additional_inputs # type: ignore
]
else:
self.additional_inputs = []
if additional_inputs_accordion is None:
self.additional_inputs_accordion_params = {
"label": "Additional Inputs",
"open": False,
}
elif isinstance(additional_inputs_accordion, str):
self.additional_inputs_accordion_params = {
"label": additional_inputs_accordion
}
elif isinstance(additional_inputs_accordion, Accordion):
self.additional_inputs_accordion_params = (
additional_inputs_accordion.recover_kwargs(
additional_inputs_accordion.get_config()
)
)
else:
raise ValueError(
f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {builtins.type(additional_inputs_accordion)}"
)
with self:
if title:
Markdown(
f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>"
)
if description:
Markdown(description)
examples_messages: list[ExampleMessage] = []
if examples:
for index, example in enumerate(examples):
if isinstance(example, list):
example = example[0]
example_message: ExampleMessage = {}
if isinstance(example, str):
example_message["text"] = example
elif isinstance(example, dict):
example_message["text"] = example.get("text", "")
example_message["files"] = example.get("files", [])
if example_labels:
example_message["display_text"] = example_labels[index]
if example_icons:
example_message["icon"] = example_icons[index]
examples_messages.append(example_message)
self.provided_chatbot = chatbot is not None
if chatbot:
if self.type != chatbot.type:
warnings.warn(
"The type of the chatbot does not match the type of the chat interface. The type of the chat interface will be used."
"Recieved type of chatbot: {chatbot.type}, type of chat interface: {self.type}"
)
chatbot.type = self.type
self.chatbot = cast(
Chatbot, get_component_instance(chatbot, render=True)
)
self.chatbot.examples = examples_messages
else:
self.chatbot = Chatbot(
label="Chatbot",
scale=1,
height=200 if fill_height else None,
type=self.type,
autoscroll=autoscroll,
examples=examples_messages if not self.additional_inputs else None,
)
with Group():
with Row():
if textbox:
textbox.show_label = False
textbox_ = get_component_instance(textbox, render=True)
if not isinstance(textbox_, (Textbox, MultimodalTextbox)):
raise TypeError(
f"Expected a gr.Textbox or gr.MultimodalTextbox component, but got {builtins.type(textbox_)}"
)
self.textbox = textbox_
else:
textbox_component = (
MultimodalTextbox if self.multimodal else Textbox
)
self.textbox = textbox_component(
show_label=False,
label="Message",
placeholder="Type a message...",
scale=7,
autofocus=autofocus,
submit_btn=submit_btn,
stop_btn=stop_btn,
)
# Hide the stop button at the beginning, and show it with the given value during the generator execution.
self.original_stop_btn = self.textbox.stop_btn
self.textbox.stop_btn = False
self.fake_api_btn = Button("Fake API", visible=False)
self.fake_response_textbox = Textbox(label="Response", visible=False)
if examples:
if self.is_generator:
examples_fn = self._examples_stream_fn
else:
examples_fn = self._examples_fn
if self.examples and self.additional_inputs:
self.examples_handler = Examples(
examples=examples,
inputs=[self.textbox] + self.additional_inputs,
outputs=self.chatbot,
fn=examples_fn,
cache_examples=self.cache_examples,
cache_mode=self.cache_mode,
)
else:
self.examples_handler = Examples(
examples=examples,
inputs=[self.textbox] + self.additional_inputs,
outputs=self.chatbot,
fn=examples_fn,
cache_examples=self.cache_examples,
cache_mode=self.cache_mode,
visible=False,
preprocess=False,
postprocess=True,
)
any_unrendered_inputs = any(
not inp.is_rendered for inp in self.additional_inputs
)
if self.additional_inputs and any_unrendered_inputs:
with Accordion(**self.additional_inputs_accordion_params): # type: ignore
for input_component in self.additional_inputs:
if not input_component.is_rendered:
input_component.render()
self.saved_input = State()
self.chatbot_state = (
State(self.chatbot.value) if self.chatbot.value else State([])
)
self.previous_input = State(value=[])
self.show_progress = show_progress
self._setup_events()
self._setup_api()
def _setup_events(self) -> None:
submit_fn = self._stream_fn if self.is_generator else self._submit_fn
submit_triggers = [self.textbox.submit, self.chatbot.retry]
submit_event = (
self.textbox.submit(
self._clear_and_save_textbox,
[self.textbox, self.previous_input],
[self.textbox, self.saved_input, self.previous_input],
show_api=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot],
[self.chatbot],
show_api=False,
queue=False,
)
.then(
submit_fn,
[self.saved_input, self.chatbot] + self.additional_inputs,
[self.chatbot],
show_api=False,
concurrency_limit=cast(
Union[int, Literal["default"], None], self.concurrency_limit
),
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
)
submit_event.then(
lambda: update(value=None, interactive=True),
None,
self.textbox,
show_api=False,
)
if (
isinstance(self.chatbot, Chatbot)
and self.examples
and not self.additional_inputs
):
if self.cache_examples:
self.chatbot.example_select(
self.example_clicked,
[self.chatbot],
[self.chatbot, self.saved_input],
show_api=False,
)
else:
self.chatbot.example_select(
self.example_clicked,
[self.chatbot],
[self.chatbot, self.saved_input],
show_api=False,
).then(
submit_fn,
[self.saved_input, self.chatbot],
[self.chatbot],
show_api=False,
concurrency_limit=cast(
Union[int, Literal["default"], None], self.concurrency_limit
),
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
retry_event = (
self.chatbot.retry(
self._delete_prev_fn,
[self.saved_input, self.chatbot],
[self.chatbot, self.saved_input],
show_api=False,
queue=False,
)
.then(
lambda: update(interactive=False, placeholder=""),
outputs=[self.textbox],
show_api=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot],
[self.chatbot],
show_api=False,
queue=False,
)
.then(
submit_fn,
[self.saved_input, self.chatbot] + self.additional_inputs,
[self.chatbot],
show_api=False,
concurrency_limit=cast(
Union[int, Literal["default"], None], self.concurrency_limit
),
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
)
retry_event.then(
lambda: update(interactive=True),
outputs=[self.textbox],
show_api=False,
)
self._setup_stop_events(submit_triggers, [submit_event, retry_event])
self.chatbot.undo(
self._undo_msg,
[self.previous_input, self.chatbot],
[self.chatbot, self.textbox, self.saved_input, self.previous_input],
show_api=False,
queue=False,
)
def _setup_stop_events(
self, event_triggers: list[Callable], events_to_cancel: list[Dependency]
) -> None:
textbox_component = MultimodalTextbox if self.multimodal else Textbox
if self.is_generator:
original_submit_btn = self.textbox.submit_btn
for event_trigger in event_triggers:
event_trigger(
async_lambda(
lambda: textbox_component(
submit_btn=False,
stop_btn=self.original_stop_btn,
)
),
None,
[self.textbox],
show_api=False,
queue=False,
)
for event_to_cancel in events_to_cancel:
event_to_cancel.then(
async_lambda(
lambda: textbox_component(
submit_btn=original_submit_btn, stop_btn=False
)
),
None,
[self.textbox],
show_api=False,
queue=False,
)
self.textbox.stop(
None,
None,
None,
cancels=events_to_cancel, # type: ignore
show_api=False,
)
def _setup_api(self) -> None:
if self.is_generator:
@functools.wraps(self.fn)
async def api_fn(message, history, *args, **kwargs): # type: ignore
if self.is_async:
generator = self.fn(message, history, *args, **kwargs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, message, history, *args, **kwargs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
try:
first_response = await async_iteration(generator)
yield first_response, history + [[message, first_response]]
except StopIteration:
yield None, history + [[message, None]]
async for response in generator:
yield response, history + [[message, response]]
else:
@functools.wraps(self.fn)
async def api_fn(message, history, *args, **kwargs):
if self.is_async:
response = await self.fn(message, history, *args, **kwargs)
else:
response = await anyio.to_thread.run_sync(
self.fn, message, history, *args, **kwargs, limiter=self.limiter
)
history.append([message, response])
return response, history
self.fake_api_btn.click(
api_fn,
[self.textbox, self.chatbot_state] + self.additional_inputs,
[self.fake_response_textbox, self.chatbot_state],
api_name="chat",
concurrency_limit=cast(
Union[int, Literal["default"], None], self.concurrency_limit
),
)
def _clear_and_save_textbox(
self,
message: str | MultimodalPostprocess,
previous_input: list[str | MultimodalPostprocess],
) -> tuple[
Textbox | MultimodalTextbox,
str | MultimodalPostprocess,
list[str | MultimodalPostprocess],
]:
if self.multimodal:
previous_input += [message]
return (
MultimodalTextbox("", interactive=False, placeholder=""),
message,
previous_input,
)
else:
previous_input += [message]
return (
Textbox("", interactive=False, placeholder=""),
message,
previous_input,
)
def _append_multimodal_history(
self,
message: MultimodalPostprocess,
response: MessageDict | str | None,
history: list[MessageDict] | TupleFormat,
):
if self.type == "tuples":
for x in message.get("files", []):
if isinstance(x, dict):
history.append([(x.get("path"),), None]) # type: ignore
else:
history.append([(x,), None]) # type: ignore
if message["text"] is None or not isinstance(message["text"], str):
return
elif message["text"] == "" and message.get("files", []) != []:
history.append([None, response]) # type: ignore
else:
history.append([message["text"], cast(str, response)]) # type: ignore
else:
for x in message.get("files", []):
if isinstance(x, dict):
history.append(
{"role": "user", "content": cast(FileDataDict, x)} # type: ignore
)
else:
history.append({"role": "user", "content": (x,)}) # type: ignore
if message["text"] is None or not isinstance(message["text"], str):
return
else:
history.append({"role": "user", "content": message["text"]}) # type: ignore
if response:
history.append(cast(MessageDict, response)) # type: ignore
async def _display_input(
self,
message: str | MultimodalPostprocess,
history: TupleFormat | list[MessageDict],
) -> tuple[TupleFormat, TupleFormat] | tuple[list[MessageDict], list[MessageDict]]:
if self.multimodal and isinstance(message, dict):
self._append_multimodal_history(message, None, history)
elif isinstance(message, str) and self.type == "tuples":
history.append([message, None]) # type: ignore
elif isinstance(message, str) and self.type == "messages":
history.append({"role": "user", "content": message}) # type: ignore
return history # type: ignore
def response_as_dict(self, response: MessageDict | Message | str) -> MessageDict:
if isinstance(response, Message):
new_response = response.model_dump()
elif isinstance(response, str):
return {"role": "assistant", "content": response}
else:
new_response = response
return cast(MessageDict, new_response)
def _process_msg_and_trim_history(
self,
message: str | MultimodalPostprocess,
history_with_input: TupleFormat | list[MessageDict],
) -> tuple[str | MultimodalPostprocess, TupleFormat | list[MessageDict]]:
if isinstance(message, dict):
remove_input = len(message.get("files", [])) + int(
message["text"] is not None
)
history = history_with_input[:-remove_input]
else:
history = history_with_input[:-1]
return message, history
def _append_history(self, history, message, first_response=True):
if self.type == "tuples":
if history:
history[-1][1] = message # type: ignore
else:
history.append([message, None])
else:
message = self.response_as_dict(message)
if first_response:
history.append(message) # type: ignore
else:
history[-1] = message
async def _submit_fn(
self,
message: str | MultimodalPostprocess,
history_with_input: TupleFormat | list[MessageDict],
request: Request,
*args,
) -> tuple[TupleFormat, TupleFormat] | tuple[list[MessageDict], list[MessageDict]]:
message_serialized, history = self._process_msg_and_trim_history(
message, history_with_input
)
inputs, _, _ = special_args(
self.fn, inputs=[message_serialized, history, *args], request=request
)
if self.is_async:
response = await self.fn(*inputs)
else:
response = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
self._append_history(history_with_input, response)
return history_with_input # type: ignore
async def _stream_fn(
self,
message: str | MultimodalPostprocess,
history_with_input: TupleFormat | list[MessageDict],
request: Request,
*args,
) -> AsyncGenerator:
message_serialized, history = self._process_msg_and_trim_history(
message, history_with_input
)
inputs, _, _ = special_args(
self.fn, inputs=[message_serialized, history, *args], request=request
)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
try:
first_response = await async_iteration(generator)
self._append_history(history_with_input, first_response)
yield history_with_input
except StopIteration:
yield history_with_input
async for response in generator:
self._append_history(history_with_input, response, first_response=False)
yield history_with_input
def example_clicked(self, x: SelectData, history):
if self.cache_examples:
return self.examples_handler.load_from_cache(x.index)[0].root
if self.multimodal:
message = MultimodalPostprocess(**cast(dict, x.value))
self._append_multimodal_history(message, None, history)
else:
message = x.value["text"]
if self.type == "tuples":
history.append([message, None])
else:
history.append({"role": "user", "content": message})
self.saved_input.value = message
return history, message
def _process_example(
self, message: ExampleMessage | str, response: MessageDict | str | None
):
result = []
if self.multimodal:
message = cast(ExampleMessage, message)
if self.type == "tuples":
if "text" in message:
result.append([message["text"], None])
for file in message.get("files", []):
result.append([file, None])
result[-1][1] = response
else:
if "text" in message:
result.append({"role": "user", "content": message["text"]})
for file in message.get("files", []):
result.append({"role": "assistant", "content": file})
result.append({"role": "assistant", "content": response})
else:
message = cast(str, message)
if self.type == "tuples":
result = [[message, response]]
else:
result = [
{"role": "user", "content": message},
{"role": "assistant", "content": response},
]
return result
async def _examples_fn(
self, message: ExampleMessage | str, *args
) -> TupleFormat | list[MessageDict]:
inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)
if self.is_async:
response = await self.fn(*inputs)
else:
response = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
return self._process_example(message, response)
async def _examples_stream_fn(
self,
message: str,
*args,
) -> AsyncGenerator:
inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
async for response in generator:
yield self._process_example(message, response)
async def _delete_prev_fn(
self,
message: str | MultimodalPostprocess | None,
history: list[MessageDict] | TupleFormat,
) -> tuple[list[MessageDict] | TupleFormat, str | MultimodalPostprocess]:
extra = 1 if self.type == "messages" else 0
if self.multimodal and isinstance(message, dict):
remove_input = (
len(message.get("files", [])) + 1
if message["text"] is not None
else len(message.get("files", []))
) + extra
history = history[:-remove_input]
else:
history = history[: -(1 + extra)]
return history, message or "" # type: ignore
async def _undo_msg(
self,
previous_input: list[str | MultimodalPostprocess],
history: list[MessageDict] | TupleFormat,
):
msg = previous_input.pop() if previous_input else None
history, msg = await self._delete_prev_fn(msg, history)
previous_msg = previous_input[-1] if len(previous_input) else msg
return history, msg, previous_msg, previous_input
def render(self) -> ChatInterface:
# If this is being rendered inside another Blocks, and the height is not explicitly set, set it to 400 instead of 200.
if get_blocks_context() and not self.provided_chatbot:
self.chatbot.height = 400
super().render()
return self
|