File size: 7,937 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
"""gr.Label() component."""
from __future__ import annotations
import json
import operator
from collections.abc import Callable, Sequence
from pathlib import Path
from typing import TYPE_CHECKING, Any, Optional, Union
from gradio_client.documentation import document
from gradio.components.base import Component
from gradio.data_classes import GradioModel
from gradio.events import Events
if TYPE_CHECKING:
from gradio.components import Timer
class LabelConfidence(GradioModel):
label: Optional[Union[str, int, float]] = None
confidence: Optional[float] = None
class LabelData(GradioModel):
label: Optional[Union[str, int, float]] = None
confidences: Optional[list[LabelConfidence]] = None
@document()
class Label(Component):
"""
Displays a classification label, along with confidence scores of top categories, if provided. As this component does not
accept user input, it is rarely used as an input component.
Guides: image-classification-in-pytorch, image-classification-in-tensorflow, image-classification-with-vision-transformers
"""
CONFIDENCES_KEY = "confidences"
data_model = LabelData
EVENTS = [Events.change, Events.select]
def __init__(
self,
value: dict[str, float] | str | float | Callable | None = None,
*,
num_top_classes: int | None = None,
label: str | None = None,
every: Timer | float | None = None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
color: str | None = None,
):
"""
Parameters:
value: Default value to show in the component. If a str or number is provided, simply displays the string or number. If a {Dict[str, float]} of classes and confidences is provided, displays the top class on top and the `num_top_classes` below, along with their confidence bars. If callable, the function will be called whenever the app loads to set the initial value of the component.
num_top_classes: number of most confident classes to show.
label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
show_label: if True, will display label.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
color: The background color of the label (either a valid css color name or hexadecimal string).
"""
self.num_top_classes = num_top_classes
self.color = color
super().__init__(
label=label,
every=every,
inputs=inputs,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
value=value,
)
def preprocess(
self, payload: LabelData | None
) -> dict[str, float] | str | int | float | None:
"""
Parameters:
payload: An instance of `LabelData` containing the label and confidences.
Returns:
Depending on the value, passes the label as a `str | int | float`, or the labels and confidences as a `dict[str, float]`.
"""
if payload is None:
return None
if payload.confidences is None:
return payload.label
return {
d["label"]: d["confidence"] for d in payload.model_dump()["confidences"]
}
def postprocess(
self, value: dict[str | float, float] | str | int | float | None
) -> LabelData | dict | None:
"""
Parameters:
value: Expects a `dict[str, float]` of classes and confidences, or `str` with just the class or an `int | float` for regression outputs, or a `str` path to a .json file containing a json dictionary in one of the preceding formats.
Returns:
Returns a `LabelData` object with the label and confidences, or a `dict` of the same format, or a `str` or `int` or `float` if the input was a single label.
"""
if value is None or value == {}:
return {}
if isinstance(value, str) and value.endswith(".json") and Path(value).exists():
return LabelData(**json.loads(Path(value).read_text()))
if isinstance(value, (str, float, int)):
return LabelData(label=str(value))
if isinstance(value, dict):
if "confidences" in value and isinstance(value["confidences"], dict):
value = value["confidences"]
value = {c["label"]: c["confidence"] for c in value}
sorted_pred = sorted(
value.items(), key=operator.itemgetter(1), reverse=True
)
if self.num_top_classes is not None:
sorted_pred = sorted_pred[: self.num_top_classes]
return LabelData(
label=sorted_pred[0][0],
confidences=[
LabelConfidence(label=pred[0], confidence=pred[1])
for pred in sorted_pred
],
)
raise ValueError(
"The `Label` output interface expects one of: a string label, or an int label, a "
"float label, or a dictionary whose keys are labels and values are confidences. "
f"Instead, got a {type(value)}"
)
def example_payload(self) -> Any:
return {
"label": "Cat",
"confidences": [
{"label": "cat", "confidence": 0.9},
{"label": "dog", "confidence": 0.1},
],
}
def example_value(self) -> Any:
return {"cat": 0.9, "dog": 0.1}
|